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ABSTRACT
Pointing is the task of tracking a target with a pointer and
confirming the target selection through a click action when
the pointer is positioned within the target. Little is known
about the mechanism by which users plan and execute the
click action in the middle of the target tracking process. The
Intermittent Click Planning model proposed in this study de-
scribes the process by which users plan and execute optimal
click actions, from which the model predicts the pointing error
rates. In two studies in which users pointed to a stationary
target and a moving target, the model proved to accurately
predict the pointing error rates (R2 = 0.992 and 0.985, respec-
tively). The model has also successfully identified differences
in cognitive characteristics among first-person shooter game
players.
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INTRODUCTION
When pointing through an input device such as a mouse or
trackpad, users typically perform a click action to confirm the
target selection. At that time, for successful target selection,
the mouse button must be pressed at the appropriate moment
when the pointer is located within the target. Here, several
questions arise: 1) when and how do users plan and execute
a click action during pointing? 2) what factors influence the
accuracy and precision of the click action? This study explores
the user’s click planning and execution process, which has
rarely been considered in previous pointing studies in human-
computer interaction (HCI).

Pointing is a task in which the tracking and the click action
are combined into one, and both actions can be blended in
different ways in time and space. For example, a careful user
can plan and perform a click action after it is certain that the
pointer is positioned within the target. On the other hand, users
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Figure 1. This study present a computational model for predicting the
pointing error rates based on an understanding of the cognitive mecha-
nism in which click action is planned and executed by the user.

who are willing to take a risk can anticipate when the pointer
will be positioned within the target and begin planning and
executing the click action before the pointer actually enters
the target.

To the best of our knowledge, extant research has not explored
the process of planning and executing click in depth. For
example, Fitts’ law [21, 38], a key model for user’s point-
ing performance, yields an accurate prediction of the overall
pointing completion time. However, there is still room for pro-
viding assumptions and explanations for the mechanism of the
user clicking on the target. Control theoretic models [41, 9,
3, 4], on the other hand, successfully explain the fundamental
principles of human motor planning and execution, but only
limited explanations have been given for click action so far
compared to tracking movement in pointing.

Effect of Click Plan Quality on Pointing Performance
Since a click action is typically performed at very short dis-
tances and duration (less than 130 ms) [57, 40], it may have a
small impact on the overall task completion time. However,
since a pointing endpoint is ultimately determined from a click
action, the quality of the click plan can affect the end point
distribution or error rate (ER), another key performance metric
of pointing. The quality of a click here means how accurate
and precise a click action can be planned and executed in time,
as the click action itself usually does not have to be spatially
accurate or precise; usually, a finger is already placed on the
click button, and clicking requires a very short travel distance.
In other words, the Fitts’ index of difficulty (ID) of the click
action is close to zero. If users click in a situation where
they can easily estimate when their pointer will be positioned
within the target, the quality of the click plan will be high,
and the variance of the endpoint distribution and the pointing
error rate will be low. However, when users want to perform
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a quicker pointing, they try to click in a situation where it is
difficult to estimate when the pointer be located in the target,
the quality of the click plan will be low, and the end point
variance and pointing error rate will have a higher value. This
study ultimately aims to present a model for predicting the
pointing error rates based on an understanding of the cognitive
mechanism in which click timing is estimated by the user.

Overview of Intermittent Click Planning Model
This study presents a cognitive model called the intermittent
click planning (ICP) model, which is a predictive model of
pointing error rates that includes explicit consideration of the
click planning process.

The ICP model essentially regards the click planning process
as a timing decision problem given to the user’s internal clock.
The ICP model describes the cognitive process in which the
user’s internal clock estimates the optimal timing of click ac-
tions while the pointer approaches the target. To this end,
the model considers six predictor variables (target position
~pt , cursor position ~pc, target velocity ~vt , cursor velocity ~vc,
target size W , period of click repetition P) and four free pa-
rameters (cσ , cµ , ν , δ ) that determine the quality of the user’s
click planning process by referring to previous studies of sen-
sorimotor synchronization [52, 46, 36] and human reaction
[45, 34]. Predictor variables describe the situation where the
user’s pointer is tracking the target, such as the velocity of the
pointer and the target, or the target size (i.e., similar to D and
W variables in Fitts’ law). Free parameters of the model are
constants representing the cognitive characteristics of users,
for example, the precision of the internal clock and the drift
rate of visual encoding (i.e., similar to a and b parameters in
Fitts’ law). Once these ten values have been determined, the
ICP model can predict the pointing error rates (ER).

The ICP model is based on two important assumptions about
users. First, the model assumes that the user is an intermittent
controller. In studies of human aimed movement, intermittent
control refers to the process by which humans discontinuously
control the parameters that produce continuous motion [9,
42, 16]. When analyzing the pointing trajectories, the user’s
tracking movement is comprised of several submovements,
which manifests that intermittent control is taking place. Due
to such intermittency, the model assumes that users build their
click plan during the last submovement that was executed just
prior to the click. Otherwise, if click actions were planned
earlier than that, the plan would become obsolete because
intermittent updates of tracking movements later make the
tracking situation different from the situation where the click
was planned. With this assumption, the model only needs to
consider the last submovement just prior to the click, not the
whole tracking trajectory when predicting the error rates.

Second, ICP model assumes that the user is a statistical en-
coder that makes optimal use of the externally provided in-
formation that allows for estimation of click timings. Based
on cue integration theory [17], the model shows how users
integrate click timings estimates from multiple sensory chan-
nels into a single click timing estimate, through the maximum
likelihood estimation (MLE) process.

We conducted two user studies to verify the explanatory power
of the model. The first study deals with pointing at a stationary
target, and the second study concerns pointing at a moving
target with constant velocity. In both studies, our model proved
to accurately predict the user’s pointing error rates (R2 =
0.992 and 0.985, respectively). We also observed that the
user’s internal factors obtained by fitting the model to the data
were kept at the same level regardless of whether the target
was moving or not. This shows that our model successfully
represents the actual cognitive process, not simply overfitting
the data with a number of free parameters.

Predicting error rates in pointing has been of great interest
for many reasons, from everyday interactions like touch [6,
7, 8] and typing [51, 55, 59, 20, 19, 24] to more dynamic
interactions like games and music [37, 36, 34]. In general,
error rate models has been used for evaluating the performance
of a given interface, designing an appropriate level of difficulty
for a game, or profiling different user populations.

To the best of our knowledge, this is the first model that de-
scribes the mechanism by which users plan and execute a click
action during pointing. Our model does not conflict with exist-
ing pointing models, such as Fitts’ law or control theoretical
models; rather, it provides room for refinement of existing
models with a thorough consideration of the click process.

RELATED WORK

Studies on Click Planning and Execution Process
A click is an input action in which a button is pressed on a key-
board or mouse to carry out a computer operation. The click is
the most basic task of HCI, but it has been studied in the past
as a secondary task required to confirm the target selection in
pointing. In this respect, a click is considered to be performed
sequentially based on minimal cognitive effort as long as the
pointer is located within the target. For example, early GOMS
family models measured total pointing time as a simple sum
of pointer movement time and click action duration [31, 11].
This is in line with the fact that in studies of the Fitts’ law,
a click action has been regarded as a non-information com-
ponent that simply adds to the trial completion time without
affecting the throughput of the pointing process [56].

However, the pointing time predicted by the GOMS models
is longer than the actual pointing time [26, 30]. This problem
comes from the assumption that the click action is performed
sequentially after tracking movement. Therefore, later GOMS
models assumed the user’s anticipatory click action [30]. The
models assume that the click action can be planned in ad-
vance while tracking the target and can also be performed
in a chunk with the tracking movement [11]. This is similar
to the perspective of the ICP model in this study. However,
the existing GOMS models differ from the ICP model. They
do not describe the cognitive processes by which users plan
and perform click actions, and also assume that perfect users
perform error-free clicks [11, 25].

Temporal Pointing Studies
Recently, several studies have modeled the user’s performance
in a special task where there is no physical movement other



than click action (i.e., pure clicking task). In that task, called
temporal pointing [36, 34, 37], the user must acquire a target
that is only selectable for a short time, such as a blinking
target or a target moving to a selection region, by activating
a click event. To successfully accomplish this task, the user
must activate the click at an accurate and precise timing by
estimating when the target will be selectable, using his or her
own internal clock.

In the temporal pointing process, two external cues are given
that allow the user to estimate the optimal click timing [34]:
(1) a temporal repetition cue and (2) a visually perceivable
movement cue. The temporal pointing models describe how
the user encodes those external temporal cues to estimate
when the target will be selectable, and consequently predict
the user’s click error rates. Based on the click planning mech-
anism described by the temporal pointing model, by adding
additional assumptions about the user’s intermittent control
process, the ICP model in this study describes how users plan
and perform click actions during pointing.

Predicting Error Rates in Stationary Target Pointing
In the pointing task to a stationary target, the user’s pointing
error rates change with the time constraints given to the user.
In general, the shorter the time limit given to the user, the
higher the error rates. This is called the speed-accuracy trade-
off [44] phenomenon. Based on empirical findings on this
phenomenon, there are various models that predict the pointing
error rates. The present study does not cover all of the models
in detail, and we refer interested readers to [53]. In this section,
we introduce a state-of-the-art model among them.

Wobbrock et al. [53, 54] derived a model that predicts the
pointing error rates of users in pointing when time pressure
varies. Their model is derived from Fitts’ law, and the error
rate prediction can be done through a closed form equation:

ER = 1− er f

{
1

D
√

2

[
2.066 ·W (2

MTe−a
b −1)

]}
(1)

where a and b are free parameters inherited from Fitts’ law, D
is the target distance, and W is the width or size of the target.
1/b has been called index of performance or throughput. MTe
is the movement time actually taken in pointing and is an
independent variable of the model. The model describes the
user’s error rate successfully for both one-dimensional [53]
and two-dimensional [54] pointing but essentially cannot hold
in situations where Fitts’ law is violated [15, 1, 14, 23, 50,
58]. The model also does not account for the user’s error rate
in pointing to a moving target. Wobbrock’s model is used as
the baseline for the first user study in the present paper, which
deals with pointing to a stationary target.

Predicting Error Rates in Moving Target Pointing
Pointing research has been conducted mainly on stationary
targets. However, pointing to moving targets is often done in
applications such as games and music. Moving target pointing
has been studied in cognitive psychology, called moving-target
interception [5] or anticipation-coincidence [18] studies. How-
ever, in the field of HCI, research on moving target pointing
has started only recently [27, 34, 36, 12, 13, 2].

Unlike a stationary target, in a pointing process on a moving
target, the positional relationship between the target and the
pointer constantly changes even if the pointer does not move.
Therefore, it is difficult to model the pointing situation with a
few predictor variables such as the target distance and target
width. For example, four or more different pointing strategies
(pursuit, head-on, receding, and perpendicular) can be char-
acterized [48]. This makes it difficult to build a model that
predicts the error rates in a moving target pointing task.

Recently, Huang and his colleagues [27, 28] have suggested a
model called Ternary-Gaussian that predicts endpoint distri-
bution from the given target velocity (V ) and target width (W )
condition. Based on the assumption that the distance to the tar-
get does not affect the user’s pointing endpoint distribution, the
model can neglect the relative positional relationship between
the moving target and the pointer. The model predicts the
pointing endpoint distribution as a 2D Gaussian distribution:

σt =
√

dt + etV 2 + ftW 2 +gtV/W

σn =
√

dn + enV 2 + fnW 2

µt = at +btV + ctW and µn = 0

(2)

where µt and σt are the mean and standard deviation of the
Gaussian distribution in the target velocity direction, respec-
tively, and µn and σn are the mean and standard deviation
of the Gaussian distribution in the normal direction to the
target velocity, respectively. a, b, c, d, e, and f are ten free
parameters of the model that must be determined from the
user experiments. The pointing error rate can be obtained by
integrating the Gaussian distribution outside the target area.
The Ternary-Gaussian model is used as the baseline for the
second user study in this paper, which deals with pointing to a
moving target.

INTERMITTENT CLICK PLANNING MODEL

Task and Problem Formulation
The ICP model concerns the general 2D pointing task. The
task involves a user moving a pointer over a target and activat-
ing a click event. If a click event occurs when the pointer is
within the target, the trial is considered successful; if it occurs
outside the target, the trial is deemed failed. When the user
repeats the pointing, the ratio of failed trials to total number
of trials is the pointing error rate (ER).

The ICP model assumes that the target tracking movement
and the click action are each separately planned and executed
by the user. Among them, the ICP model concentrates on the
modeling of the click input movement. More specifically, in
the ICP model, it is assumed that the click action is planned
and executed in the middle of the target tracking movement.
Thus, how the target tracking movement of the pointer is being
performed will affect the quality of the planned click action.
The situation where the pointer is tracking the target can be
characterized by the following variables:
• Target velocity (~vt ): The two-dimensional vector representing the velocity

at which the target moves
• Target position (~pt ): The two-dimensional vector representing the location

of the target
• Target size (W ): The width of the target (diameter if the target is circular)



• Pointer velocity (~vp): The two-dimensional vector representing the velocity
at which the pointer moves

• Pointer position (~pp): The two-dimensional vector representing the loca-
tion of the pointer

• Mean period of click repetition (P): When clicks are repeated this is the
average of the preceding inter-click time intervals (or average click period).

Note that the above variables can also explain the pointing
situation for a stationary target (i.e.,~vt = 0).

Model Derivation
Two-level Process of Click Planning and Execution
The ICP model assumes that the planning and execution of
click action is based on a two-level process that contains a
central and a peripheral level (see Figure 2). The central
process is responsible for estimating the optimal click timing
from a given target tracking situation. The peripheral process
serves to actually implement the click action at the timing
estimated by the central process.

The central process is performed by the user’s internal clock.
In a given tracking situation, the user’s internal clock is given
several sensory signals that allow for estimation of optimal
click timing. The internal clock then encodes the sensory
signals to estimate the optimal click timing, and generates
a trigger pulse to activate the click action at the estimated
optimal click timing. This trigger pulse is sampled from a
probabilistic distribution and has a specific mean and variance
because a given sensory signal is not completely reliable.

The peripheral process is performed by the user’s motor sys-
tem. When the internal clock generates an activation pulse,
the peripheral process executes a predefined click action as
soon as possible. The click action here refers to the very short
movement of the user’s finger pressing the button. However,
there is an inherent delay in the motor system. As a result,
the user’s click action is always slightly later than the inter-
nal clock’s intended timing. This delay is also a stochastic
value with a specific mean and standard deviation. According
to earlier models of sensorimotor synchronization [52, 49],
the trigger pulse and the motor delay can be assumed to be
probabilistic independent.

As a result, the quality of the user’s click actions depends
on the following factors in this model: (1) the quality of
the trigger pulses generated by the internal clock and (2) the
quality of the motor delay. For the construction of a simple and
effective model, we assume that the motor process’s quality
is much higher (mean and variance close to zero) than that of
the internal clock, so that the effect of the motor delay on the
click action can be ignored. This is a plausible assumption
because click action has a Fitts’ ID that is negligible.

Intermittent Click Planning
It is known that a person is an intermittent controller when per-
forming target tracking movements. Intermittent control refers
to the process of intermittently modifying the original motor
plan while humans are performing their movements. That is,
the new motor plan intermittently replaces the existing motor
plan, and the human prepares the next motor plan while the
current motor plan is executed [42, 9, 10]. As a result of inter-
mittent control, the trajectory of a person’s aimed movement

Figure 2. The ICP model consists of two-level process: The central pro-
cess encodes a given sensory signal, producing activation pulses that trig-
ger the click action. The peripheral process executes the click action as
soon as the internal clock generates an activation pulse.

shows inherent discontinuities and is comprised of several sub-
movements. Because of such intermittent updates of the motor
plan, it is not correct to assume that planning of a click action
takes place during the entire target tracking movement. Rather,
we assume that the plan for the click action is made during the
execution of the last submovement just before the click. If the
click action is planned before that, it will be meaningless due
to the subsequent intermittent control process.

The start and end of a submovement can be found by tracking
the local maximum and minimum from the speed profile of
the trajectory [35]. Assuming that the time at which the last
submovement started is tsub, all model derivations after this
section deal only with the pointing situation since that point.

Implicit Aim Point in Time
In order for the click action to be attempted at the appropriate
timing, the user’s internal clock must first estimate the timing
of two major events that occur during the target tracking move-
ment. The first event is the moment the user’s pointer first
contacts the target (t = tenter). The second event is the moment
the user’s pointer exits the target (t = texit). The user must
activate the click action between these two events to make the
target acquisition successful.

Let Wt be the time interval between two events. Wt is the
duration from the moment the pointer first touches the target
until it passes completely through the target:

Wt =Wintersect/||~vp−~vt || (3)

where ~vp is the velocity vector of the pointer and ~vt is the
velocity vector of the target. Wintersect is the length of the line
where the movement trajectory of the pointer intersects with
the target (see Figure 3). If the pointer does not penetrate the
target during the last submovement, the value of Wintersect is
simply zero.

The ICP model assumes that the user can encode the tenter and
texit from the sensory signals given in the pointing situation
and can determine the appropriate click timing (tclick) within
Wt . The click timing is expressed relative to Wt as follows:

tclick = cµ ·Wt (4)

In the above equation, time is defined with tenter as 0; cµ is
called the user’s implicit aim point. If cµ is 0, tclick = tenter; if
cµ is 1, tclick = texit .

Input Distribution in Time
Since negligible motor delay is assumed, a user’s click timing
distribution is determined solely from the distribution of click



Figure 3. The ICP model describes the cognitive process in which a user
estimates the optimal click timing (tclick) in the last submovement of the
target tracking process.

timings estimated by the internal clock. In this case, all cases
where tclick is earlier than tenter or later than texit are failed
inputs. In sensorimotor synchronization studies [46], a per-
son’s response timing distribution can generally be regarded
as Gaussian N (µ,σ2), and its mean (µ) and variance (σ2)
can be expressed as (see Figure 3 bottom):

µ = E[tclick] and σ
2 = Var[tclick] (5)

Modeling Mean of Click Timing Estimates
The ICP model assumes a user’s constant implicit aim point
(cµ ) to account for the mean of the click timing distribution.
In other words, the mean of the user’s click timing distribution
is presumed to be located at a constant ratio of the length of
Wt . For example, if the user’s implicit aim point is 0.25, the
mean value µ of the click distribution would be 25 ms for
Wt 100 ms, and 50 ms for Wt 200 ms (from tenter = 0). The
constant implicit aim point of the user has been demonstrated
experimentally from previous temporal pointing studies [36,
34, 37]. Based on this assumption, the mean (µ) of the input
distribution can be expressed as:

µ = E[tclick] = E[cµWt ] = cµWt (6)

Modeling Variance of Click Timing Estimates
While approaching the target, users can estimate click timing
from two different sensory cues. The first cue is a tempo-
ral structure cue; if the click has been performed at regular
intervals or at a specific rhythm, the user can also estimate
the timing of the next click without additional information
[36]. The second is a visually perceivable movement cue that
is encoded from the relative position and velocity between
the pointer and the target. Knowing the distance between the
pointer and the target and the relative velocity at which the
pointer approaches the target, users can estimate the timing
when the click action should be performed [34, 47].

The click timings estimated from each cue have different stan-
dard deviations. The standard deviation of the click timing
estimated from the temporal structure cue (σt) is known to
increase in proportion to the period of repetition (P). This is
known as the scalar property of the internal clock [46, 22]. For
example, clapping every 5 seconds will have a higher timing

Figure 4. The final click timing is encoded separately from each of the
temporal structure cue and the visual cue.

variability than clapping once every second:

σt ∝ P (7)

Next, the standard deviation of the click timing encoded from
the visual movement cue (σv) can be modeled as a function
of the time interval at which the user can observe the relative
movement between the pointer and the target (i.e., cue viewing
time tc):

σv ∝ 1/(eνtc −1)+δ (8)

This equation provides an intuitive understanding of the reli-
ability of the click timing encoded from the visual cue [34].
If cue viewing time is sufficiently long (tc→∞), σv converges
toward δ . δ represents the minimum standard deviation of
the click timing the user can encode from the visual cue. On
the other hand, if cue viewing time is very short (tc→0) this
is the same situation as when no visual cue exists, where σv
diverges to infinity. ν represents the rate at which the user
encodes click timing from the visual cue. The higher this is,
the more precise click timing can be planned for the same tc.
ν is also called the drift rate in models of human reaction [45].

Since we consider only the last submovement in the click
model due to the user’s intermittent control process, it can be
assumed that the cue viewing time (tc) is the time from the
start of the submovement (tsub) to the time of the click (tclick):

tc = tclick− tsub (9)

Finally, by defining cσ as the parameter that determines the
proportionality of Equations 7 and 8, σt and σv can be ex-
pressed as follows:

σt = cσ P and σv = cσ (1/(eνtc −1)+δ ) (10)

Integration of Click Timing Estimates
Cue integration theory [17, 34, 43] describes the process by
which humans integrate multiple estimates of a physical quan-
tity into a single estimate. According to the theory, humans
encode the given information in a statistically optimal way,
which can be expressed by the maximum likelihood estima-
tion (MLE) process. For example, let’s say a person wants to
estimate the size of a ball. The person can estimate the size of
the ball separately through visual and haptic sensations. If the
estimates from each sensory channel have different variance,
σ2

1 and σ2
2 , then the variance of the person’s final estimate of

ball size is expressed by MLE as:

σ
2 = σ

2
1 σ

2
2 /(σ

2
1 +σ

2
2 ) (11)

Through this process, the reliability of the integrated estimate
is higher than the reliability of individual estimates.



Table 1. Comparison between baseline models and ICP model
No. free pa-
rameters

Moving
Target

Stationary
Target

Physical mean-
ing of free pa-
rameters

Baseline 1 [53] 2 No Yes Yes
Baseline 2 [28] 10 Yes No No
ICP model 4 Yes Yes Yes

Based on the cue integration theory, we can also model the
variance of the final click timing that the user estimates during
the target tracking process. As described earlier, click timing
can be estimated separately from two different sensory cues,
and the variance of those estimates can be expressed as σ2

t and
σ2

v in Equation 10. When those two estimates of click timings
are integrated into a single click timing by MLE, the variance
of the final click timing estimate (σ2) can be expressed as:

σ
2 =

σ2
t σ2

v

(σ2
t +σ2

v )
=

c2
σ ·P2

(1+(P/(1/(eνtc −1)+δ ))2)
(12)

End Point Distribution and Pointing Error Rate
Finally, the user’s click timing distribution is a 1D Gaussian
distribution N (µ,σ2) with mean µ (Equation 6) and variance
σ2 (Equation 12) on the time axis. In this distribution, cases
where the click input timing tclick is between 0 and Wt are
successful in acquiring the target, and cases where the click
input timing tclick is smaller than 0 or greater than Wt are
failing in the target acquisition. So by subtracting the integral
of the input distribution from 0 to Wt from 1.0, we can get the
expected pointing error rate (ER):

ER = 1−
∫ Wt−µ

0
N (t)dt−

∫
µ

0
N (t)dt

= 1− 1
2

[
er f (

Wt −µ

σ
√

2
)+ er f (

µ

σ
√

2
)

] (13)

= 1− 1
2

er f (
(1− cµ)Wt√

2c2
σ ·P2

1+( P
1

eνtc−1
+δ

)2

)+ er f (
cµWt√

2c2
σ ·P2

1+( P
1

eνtc−1
+δ

)2

)


Summary of Free Parameters in the ICP Model
The ICP model has four free parameters (cσ , cµ , ν , δ ) that
must be calibrated through user experiments, such as the slope
and y-intercept in Fitts’ law. The larger the number of free
parameters, the better the model can describe the data, but at
the same time, overfitting problems can arise. The baseline
model of stationary target pointing [53] has two free parame-
ters, and the baseline model of moving target pointing [28] has
ten free parameters. With just four parameters, the ICP model
can effectively predict the pointing error rate for both moving
and stationary targets (see Table 1). Also, each parameter of
the ICP model has a clear cognitive meaning. The meaning of
each free parameter of the ICP model is:

• cσ represents the encoding precision of the user’s internal
clock. The higher the cσ , the lower the performance of
estimating the click timing.
• cµ represents the user’s implicit aim point. If cµ is 0 (or

1.0), it means that the user estimated on average the click
timing the moment the pointer first contacted (or first ex-
ited) the target. A cµ of 0.5 gives the lowest error rate,

but users typically have a cµ value lower than 0.5 [36, 34,
37], which is called the negative mean asynchrony (NMA)
phenomenon [49, 46, 32].
• ν is the rate at which the user encodes sensory information

to estimate click timing from the visual cue. The higher this
value, the more reliable the user can perform with a shorter
cue viewing time (tc).
• δ is the minimum standard deviation of the click timing

estimated from the visual cue when the user is given enough
cue viewing time (tc).

IMPLEMENTATION OF PREDICTION SOFTWARE
This section describes how to predict the pointing error rate
on a real system using the ICP model. We need to implement
a software that runs in three steps: (1) real-time trajectory
logging, (2) submovement segmentation, and (3) predicting
pointing error rate.

Step 1: Real-Time Trajectory Logging
The software first logs the trajectory of the target and the
pointer in real time until a click event occurs. If the sampling
rate of the input device being used is f (unit: Hz), more
specifically the software collects the following data from the
moment of the previous click until the next click is observed:[

xi
p, yi

p, xi
t , yi

t , t i] , for i = 1 to N

(xi
p,y

i
p) and (xi

t ,y
i
t) represent the coordinates of the i-th sam-

pled pointer and the target, respectively. t0 is the moment
the preceding click occurred and tN is the moment when the
current click event occurred. When a total of N points are sam-
pled, t i is the time stamp of the i-th sampling (i.e., t i = 1/ f · i).

Step 2: Submovement Segmentation
When a click occurs, the speed profile of the pointer is ob-
tained by numerically differentiating the logged trajectory of
the pointer. The resulting speed profile is often contaminated
with sensor noise from the input device. Since this reduces
the performance of submovement segmentation, noise in the
speed profile must be removed through a low-pass filter. Vari-
ous types of filters can be applied, but simple forms such as
Gaussian kernel filters (e.g., σ = 3) can work well enough.

The system then identifies the local minima and maxima in
the smoothed speed profile and each neighboring minimum-
maximum-minimum triplet is considered to be a possible sub-
movement (see Figure 5). We use Persistence1D [33] as an
algorithm to find local extrema in the speed profile. This algo-
rithm returns all pairs of minima and maxima that exceed the
pre-defined persistence value (e.g., 0.2 for a computer mouse).
To prevent jitter of click motion from being missegmented into
a submovement, only triplets with a duration of at least 50 ms
are considered as submovements.

Step 3: Predicting Pointing Error Rate
Among the submovements segmented in the previous step, the
submovement started just before the click event is analyzed
to predict the error rate (i.e., the last submovement). If the
last submovement of the pointer started at the s-th sample, the
timestamp at that moment is ts. Because the user could observe



Figure 5. The actual result of the submovement segmentation

the movement of the pointer during the last submovement, the
cue viewing time (tc) can be calculated from Equation 9:

tc = tN− ts (14)

The software then computes the average velocity vector of the
pointer (~vp) and target (~vt ) during the submovement:

~vp =
[
(xN

p − xs
p), (y

N
p − ys

p)
]
/tp

~vt =
[
(xN

t − xs
t ), (y

N
t − ys

t )
]
/tp

The relative velocity vector~v between the target and the pointer
can be simply obtained as follows:

~v =~vp−~vt (15)

From the point (xs
p,y

s
p) where the last submovement starts,

the pointer approaches the target with a relative velocity of
~v. The software then calculates Wt , which is the time it takes
the pointer to pass through the target. Wt can be obtained by
dividing Wintersect by the magnitude of the relative velocity
‖~v‖, where Wintersect is the length of the line segment defined
by the intersection of the extended straight line~v and the target
(Figure 3). Next, P is calculated, which is the period in which
the click is repeated. This can be calculated as the average of
the time intervals between all preceding clicks [36, 34].

From the obtained P, tc, and Wt , the software can finally predict
the pointing error rate through Equation 13. If free parameters
are already available, the error rate is calculated immediately.
If free parameters are not obtained in advance, the values
can be obtained through a general optimization process that
minimizes the difference between the error rate predicted by
the ICP model and the error rate of users observed in actual
experiments. In the following sections, we demonstrate those
processes in greater detail by conducting actual user studies
and verify the error rate prediction performance of the model.

STUDY 1: POINTING ON A STATIONARY TARGET
Based on the implemented system, two user studies were
conducted (Figure 6). In all studies, the data analysis was
performed using the implementation described in the previous
section. In Study 1, participants performed a two-dimensional
pointing task on a stationary target. Users were given a time
limit, which resulted in a wide range of error rates. We used
Wobbrock’s error rate model [53] as the baseline for perfor-
mance comparison.

Figure 6. Task screen of Study 1 (pointing on a stationary target) and
Study 2 (pointing on a moving target)

Method
Participants
Twelve paid participants from a local university (7 males, 5
females) were recruited. The average age of the participants
was 24.42 years (σ=3.26). All of the participants were right-
handed. Their average mouse usage time per day was 5.63
hours (σ=3.59). The participants played games 6.86 hours
(σ=2.61) per a week with a computer mouse. All participants
had normal or corrected vision.

Design
The experiment followed a 2×3×6 within-subject design with
three independent variables: Target Width, Target Distance,
and Time Limit. The levels were the following:

• Target Width: 4.8 and 8.4 mm
• Target Distance: 48, 144, and 240 mm
• Time Limit: 300, 400, 500, 600, 700, and 800 ms

Twenty angle of approaches were tested for each Time Limit-
Target Width-Target Distance condition. A Time Limit con-
dition did not change to the next condition until all corre-
sponding width-distance conditions had been completed (240
pointing trials per each Time Limit condition). Within a Time
Limit condition, the Target Width and Target Distance are
given in random order. The Time Limit conditions are given
in a random order. Each Time Limit condition was repeated
twice. The angle of approach was given to the participant in a
clockwise sequence of 360 degrees divided into 20 steps. In
the end, 17,280 (=2×3×6×2×20×12) input events from
12 participants were logged.

Task
Participants were given two circular targets. After clicking
on the blue target, clicking on the red target ended the trial
(Figure 6). If the participant did not click on the red target
within the given Time Limit after clicking on the blue target,
the red target disappeared. Even if the red target disappeared,
participants had to click to go to the next trial. If a participant
clicked inside the red target (or the disappeared red target),
the trial was considered successful. Participants were asked to
perform pointing as quickly and accurately as possible. They
were also asked to complete each trial within the Time Limit.

Apparatus
The application was implemented on a 3 GHz desktop com-
puter (Mac mini, 10.13.1). A 27-inch LED monitor (LG
27UD69P) was used, and the resolution of the task screen was
2,560×1,440 pixels. The pointing device was a two-button



wired optical mouse (Samsung SNJ-B138) with a resolution
of 1,000 DPI and a the polling rate of 125 Hz. The pointer was
a standard arrowhead pointing to the upper left. The mouse
gain function maintained the default setting of the OS. The
refresh rate of the application was maintained at 60 Hz.

Procedure
Participants sat on a regular office chair and the monitor was
installed at the participant’s eye level. Before the experiment,
the experimenter briefly introduced the task to the participants.
Subsequently, the participants filled out a pre-questionnaire.
Participants also signed a consent form. A practice session
was given until participants were accustomed to the task. The
experiment for each individual took about an hour and each
participant was rewarded with $10.

Results
Data Validation
For all trials, the movement time that the participants actually
performed the task was about 124% of the given Time Limit.
However, as the last submovement already started at 72%
(SD=51%) of the Time Limit, we know that the participants
did not intentionally wait for the target to disappear.

Descriptive Statistics
The overall average error rate for all participants’ trials was
37%. This is about two times higher than the error rate in other
studies [53, 54]. The duration of the last submovement, or the
cue viewing time tc, was measured to be 296 ms (SD=119 ms)
on average, which is similar to the known values in previous
studies [29, 35]. Wt was measured to be 244 ms on average
(SD=285). In 2,613 trials (15.1 %), the pointer moved in a
direction that could not intersect the target (i.e., Wintersect=0).
In that case Wt was considered zero. Except for those cases,
the average of the measured Wt was 288 ms (SD=289). The
mean of the input repetition period P was measured as 636
ms (SD=207). The average magnitude of the relative velocity
between the target and the pointer was 64.98 mm/s (SD=103).

Overall Model Fit to the Baseline Model
As a baseline, Wobbrock’s model [53, 54] was fitted to 36
data points using Equation 1 (2 Target Widths × 3 Target
Distances× 6 Time Limits). In the equation, MTe is calculated
as the mean time actually spent in a pointing trial at each
condition, not the given Time Limit value. We used the Global
Optimization Toolbox of MATLAB for the fitting.

As reported in the previous studies [53, 54], the model suc-
cessfully explains the error rate of the user (Adjusted R2 =
0.954, see Figure 7). The free parameters of the model were
a=130 ms and b=157 ms/bit, respectively. Because these val-
ues are based on Fitts’ law, throughput can be calculated as
the reciprocal of b. As a result, we obtained 6.37 bit/s similar
to the previously measured value for the mouse [39].

Table 2. The fitting results from the two user studies in this paper
cµ cσ ν δ R2

Study 1 0.129 0.0873 14.532 0.461 0.992
Study 2 0.241 0.093 25.33 0.337 0.985

Figure 7. Results from Study 1: Both the baseline model and the model
proposed in this study explained the observed error rate well.

Overall Model Fit to ICP Model
In our model, the variable that determines the error rate of the
user is Wt/Dt (see Equation 13). Therefore, the total data is
arranged in order of Wt/Dt , and then the error rate is obtained
through the sequential binning from the left. This allows us
to get 36 final data points as we fit the baseline model. The
following values from a previous study [34] were used as the
free parameters for the initial sorting: cµ =0.25, cσ =0.08,
ν =20.2, and δ =0.366.

As a result, our model fitted with the observed error rate with
a high coefficient of determination (adjusted R2 = 0.992, see
Figure 7). The free parameters obtained as a result of fitting
are summarized in the Table 2. We also conducted two-fold
cross validation with random sampling for each model. The
mean absolute error (MAE) values obtained were 4.86% and
2.56% for the baseline model and our model, respectively.

Discussion
In the task of pointing to a stationary target, the baseline model
and the ICP model predicted the error rate of the participants
with high accuracy. However, our model predicted error rates
more accurately than the baseline model. This supports our
hypothesis that the pointing error occurs from the user’s click
timing estimation during the last submovement.

STUDY 2: POINTING ON A MOVING TARGET
In Study 2, participants pointed to a circular moving target.
Regardless of the target movement, we analyzed the last sub-
movement with the same algorithm as in Study 1 and fitted it
to the model. We used Huang’s model [28] as a baseline.

To verify that the free parameters obtained from the fittings
successfully reflect the cognitive characteristics of the users,
we recruited participants into two groups: gamers and non-
gamers. Participants in the gamer group were recruited as
experts in the first-person shooter (FPS) games due the simi-
larities of the tasks performed in such games and in the study.

Method
Participants
We recruited a total of 16 participants divided into two groups:
(1) gamers (8 males) and (2) non-gamers (1 male, 7 females).
All the participants were right-handed. The average age of
participants in the gamer group was 24.4 years (SD=3.81) and



in the non-gamer group was 25.63 years (SD=4.53). Partic-
ipants of the gamer group played FPS games an average of
15 hours per week, and their average mouse usage time per
day was 7.13 hours (SD=2.23). Meanwhile, non-gamer group
participants did not play FPS game at all and they use a mouse
for an average of 4.25 hours (SD=3.99) per week.

Participant Recruiting Criteria
We recruited gamers based on the following criteria: (1)
a player of the game PlayerUnknown’s Battlegrounds
who was within the top 5% rating, or (2) a player of the game
Overwatch who owned a higher level than master (the top 2
to 3%) and who mainly focused on characters who need ex-
cellent aiming ability (such as Hanzo or Mccree). Meanwhile,
non-gamers were recruited with people who had never played
FPS games before.

Design
The experiment followed a within-subject design with two
independent variables: Target Speed and Target Width. These
two factors were randomly determined for each trial in the
following ranges:

• Target Speed: from 0 mm/s to 510 mm/s
• Target Width: from 9.6 mm to 24 mm

In order to satisfy ecological validity, we reproduced the speed
range of the target in commercial games such as Fruit Ninja
(107 mm/s) and Piano Tiles (314 mm/s). The location
where the target was generated and the direction the target
moved were randomly determined for each trial. Participants
performed a total of 9 Blocks of trials and each Block con-
sisted of 200 trials. As a result, 28,800 input events from 16
participants were logged (=16×9×200).

Task
Participants were instructed to click on a blue circular target
moving straight at a constant speed (see Figure 6). If the
target collided with a wall (edge of the screen), the target
bounced at the same angle as the incident angle. The trial was
considered successful only when the participant clicked inside
the target. Regardless of success, if a click event occurred,
the current target disappeared and a new target was created
with randomized size and speed. Participants were asked to
perform pointing as quickly and accurately as possible.

Apparatus
The application was implemented on the same 3 GHz desk-
top computer as in Study 1 (Mac mini, 10.13.1 High Sierra).
A 24-inch LED-backlit LCD gaming monitor (ASUS ROG
SWIFT PH248Q) was used and the resolution of the task screen
was 1920×1080 pixels. The pointing device was a wired opti-
cal mouse (Logitec G502) with a resolution of 1000 DPI and
a polling rate of 125 Hz. Mouse acceleration was disabled and
the tracking speed of the mouse was 4/10 (the default setting
of the Mac OS). The refresh rate of the application used in the
experiment was maintained at 60 Hz.

Procedure
Participants sat on a regular chair. The display was installed
at the participant’s eye level. Participants signed a consent
form before the experiment. After the participants completed

Figure 8. Results from Study 2

the pre-questionnaire, the experimenter briefly demonstrated
the task. 50 trials were given to participants as a practice
session before starting the main study. A one-minute break
was provided at the end of each Block. It took about an hour
per person to finish the study. The amount of compensation
for participation was the same as in Study 1.

Results
Descriptive Statistics
The overall average error rate for all participants’ trials was
37%. This value was almost the same as in Study 1. The
duration of the last submovement, or tc, was measured to
be 275 ms (SD=238 ms) on average, which is similar to the
submovement duration reported in previous studies [29, 35].
Wt was measured to be 107 ms on average (SD=148 ms). In
4,658 trials (16.2 %), the pointer moved in a direction that
could not intersect the target (i.e., Wintersect=0). In that case,
Wt was considered zero. The average interval from click to
click was 905 ms (SD=460 ms). The average magnitude of
the relative velocity between the target and the pointer (‖~v‖)
was 144 mm/s (SD=74 mm/s).

Removing Learning Effect
Pointing to a moving target is a challenging task, so there can
be a significant learning effect. In fact, the effect of Block on
error rate was significant (F(8,120)=5.183, p<0.001). From
the Helmert contrast of the Block effect, we confirmed that
the learning effect becomes insignificant from the third Block
(p=0.376) The following results were obtained by analyzing
the remaining seven Blocks after excluding the first two.

Overall Model Fit to the Baseline Model
We used Huang’s model as the baseline model for the Study
2 [28]. In Huang’s model, the difficulty of a task can be
determined according to µt , σt , and σn (see Related work
section). Therefore, we arranged the data by the average of
these three values. Then, we binned in order from the smallest
value to the larger one and obtained 36 fit points to plot. In this
study as well, we used the Global Optimization Toolbox
of MATLAB for the fitting. Huang’s model does not provide
explicit error rate prediction for circular targets. Therefore,
we calculated the error rate based on Monte-Carlo simulation
from the distribution predicted by the model and the average
target size of the bin. The data was fitted to the baseline model
with adjusted R2=0.558 and the MAE value obtained from
two-fold cross validation was 6.33%. The free parameters of
the model were at=0.13, bt=1.0−4, ct=-0.19, dt=3.6−10, et=0,
ft=0.041, gt=0, dn=0.003, en=0, and fn=0.



Figure 9. Comparison of four free parameters between the gamer group
and the non-gamer group

Overall Model Fit to the ICP Model
In the same manner as in Study 1, the data of all trials were
binned by Wt/Dt , and finally, 36 averaged data points were
obtained. As a result, our model fitted the empirical error rate
with a high coefficient of determination (adjusted R2 = 0.985,
see Figure 8). The free parameters obtained as a result of
fitting are summarized in the Table 2. The free parameters
obtained were similar to those in the previous study [34] and in
Study 1. We performed two-fold cross validation with random
sampling. The MAE was 3.04% for our model.

Comparing Gamers and Non-gamers
By fitting our model to individual data, we obtained four free
parameters (cσ ,cµ ,ν ,δ ) for each participant. Considering the
reduced number of individual data points, the error rates were
obtained from the 18 bins of Wt/Dt . As a result, the error
rate for each participant was fitted to the model with a high
coefficient of determination (R2=0.938 to 0.990, M=0.973,
SD=0.016). An independent-samples t-test was conducted
to compare free parameters and error rates between gamers
and non-gamers. There was a significant difference in the
error rates for gamer (M=27.4%, SD=6.9%) and non-gamer
(M=44.1%, SD=14.1%) groups; t(14)=3.021, p = 0.009. There
was no significant difference in the period of input repeti-
tion (P) between gamers (M=871 ms, SD=186 ms) and non-
gamers (M=886 ms, SD=64 ms); t(8.641)=-0.218, p = 0.833.
There was also a significant difference in the cσ for gamer
(M=0.058, SD=0.029) and non-gamer (M=0.11, SD=0.031)
groups; t(14)=-3.14, p = 0.007. No significant difference was
found for the other three parameters cµ (t(14)=0.36, p=0.73),
ν (t(14)=-0.22, p=0.83), and δ (t(14)=1.48, p=0.16). The
results are summarized in Figure 9.

Discussion
Unlike Study 1, in Study 2, there was a significant difference
in explanatory power between the ICP model and the baseline
model. The results of the cross validation also showed that
the ICP model predicted the error rate better than the baseline
model. The baseline model, however, predicted the error rate
in moving target pointing with high accuracy in the original
paper [28] (R2=0.94). The difference between their results and
ours seems to be due to differences in the speed range of the
targets used in the experiment. Their experiment used targets
with a maximum velocity of approximately 200 mm/s when
the pixels were roughly converted to millimeters. However,
our experiments used a target speed of up to 500 mm/s, which
is 2.5 times faster than the target speed they used.

Huang’s model predicts that the faster the target speed (V
in Equation 2), the greater the variance of the pointing end
point. However, according to the ICP model, even if the target
moves fast, the pointing error rate can be lowered if the user

moves well to reduce the relative speed between the pointer
and the target. In fact, the coefficients of the Huang model,
which are multiplied by the target velocity (et , en, gt), were
mostly optimized to be zero at the fitting, indicating that the
variance of the endpoint distribution did not increase as the
model predicted when the target velocity was increased.

The parameters of the ICP model obtained from Study 1 were
very similar to the values obtained from Study 2 (see Table
2). This supports the assumption of the ICP model that the
planning and execution of click actions is performed with the
same cognitive-motor process regardless of whether the target
is moving or not.

The model also succeeded in uncovering differences in cogni-
tive characteristics in the click process between gamers and
non-gamers. Compared to non-gamers, gamers had higher
cσ value and lower δ value. As shown in Equation 10, the
reliability of the click timing obtained from the visual cue (σv)
can be thought of as the product of cσ and δ . However, the
reliability of the click timing obtained from the temporal cue
(σt ) is determined from cσ alone. As shown in Figure 9, mul-
tiplying the cσ and δ values yields similar values for gamers
and non-gamers. Therefore, we can interpret that gamers have
similar ability to estimate click timing from visual cues to that
of non-gamers, but have better ability to encode the rhythm of
clicks with an internal clock.

CONCLUSION
The model proposed in this study accurately predicted users’
pointing error rate with a simple algorithm regardless of the
target motion (R2= 0.985 to 0.992 and MAE=2.56% to 3.04%).
In particular, the four free parameters obtained from the data
fitting remained similar for different pointing situations (see
Table 2). Based on this robust explanatory power, the model
revealed significant cognitive differences between gamers and
non-gamers.

Nonetheless, this study has some limitations. First, it is dif-
ficult to apply our model in a situation where the trajectory
of the cursor is difficult to track. Secondly, further validation
is needed as to whether this model is generally applicable for
more complex patterns of target motion. Third, our model did
not explain how a user’s internal clock encodes the temporal
structure cue when the input is randomly repeated. Fourth,
the ICP model was currently only tested for young users in
their 20s. For users from other age groups, further research
will be needed to determine whether the ICP model predicts
error rates well and extracts meaningful parameters. Fifth,
the ICP model only predicts the error rate of the click action
and does not predict how the user’s tracking movement will
be performed before the click action. We envision that this
limitation can be overcome by integrating the ICP model with
existing control theoretical [41, 9, 10] pointing models that
can simulate the user’s target tracking movements.
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