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ABSTRACT
This paper investigates a common task requiring temporal
precision: the selection of a rapidly moving target on display
by invoking an input event when it is within some selection
window. Previous work has explored the relationship between
accuracy and precision in this task, but the role of visual cues
available to users has remained unexplained. To expand mod-
eling of timing performance to multimodal settings, common
in gaming and music, our model builds on the principle of
probabilistic cue integration. Maximum likelihood estimation
(MLE) is used to model how different types of cues are inte-
grated into a reliable estimate of the temporal task. The model
deals with temporal structure (repetition, rhythm) and the
perceivable movement of the target on display. It accurately
predicts error rate in a range of realistic tasks. Applications
include the optimization of difficulty in game-level design.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI) :
Miscellaneous

Author Keywords
Temporal pointing; player modeling; moving target selection;
level of difficulty; game balancing; cue integration.

INTRODUCTION
This paper presents novel data, analysis, and a model of an
interactive task common in many popular games and music
applications. In moving target selection, a displayed target
moving rapidly must be selected with a brief input movement
(such as a button pressing) while it is within some selection
region. This is a special case of a general task called temporal
pointing [23], and to press the button at the right time, the
user must perceive information about both how long to wait
to perform input execution (i.e., temporal distance) and how
precisely the input should be performed immediately after the
wait (i.e., temporal width). We are interested in this encoding
and decision process. Unique to moving target selection, this
process is expected to happen rapidly. Prior to our study, it
was unknown how it is affected by the characteristics of the
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target (such as speed), the characteristics of the input device
being used, and so on.

The model presented here contributes to the understanding on
how to design tasks that require temporal precision. According
to our survey,1 for 23 of the top 100 free games in the Google
Play market and 19 in the iOS App Store’s, selection of moving
targets is an essential part of the game. Traditionally, the
difficulty of levels is designed via heuristics [1, 3, 10, 11, 19,
21, 29]. Heuristics are effective for rapid design, but they
are not predictive and are unsuitable for fine-tuning design
parameters. For example, the HEP (Heuristics for Evaluating
Playability) set [10] provides 43 heuristics. Several are related
to the level of difficulty, but all are mute about how design
choices are linked to player performance. Therefore, tuning
of level parameters on the basis of heuristics requires iteration
and costly empirical testing.

Our objective is a practical but accurate model that can be
used to analyze moving target selection tasks and to predict
the effects different design decisions bring to bear on user
performance [16, 18]. Our model is based on the principles of
probabilistic motor control. According to the cue integration
theory [14], people’s performance in sensorimotor tasks is
informed by priors expressing how likely different events are.
The key to the theory is that such priors, learned over time,
render it possible to make an estimate for very rapidly moving
or ambiguous stimuli. We hypothesize that in the case of
moving target selection, two types of cues are available to
form such priors: (1) temporal structure (pace, rhythm, etc.)
and (2) visually perceivable movement of the target toward
the selection region.

Our model uses maximum likelihood estimation (MLE) to
integrate information from each cue into one estimation of
the target. Cue integration theory makes the assumption that
people consider all information available to them optimally.
The model thus yields an upper bound of performance achiev-
able under favorable conditions. We present data suggesting
that this optimality assumption provides surprisingly accu-
rate predictions in realistic tasks. Also, being derived from
a clear cognitive mechanism, our model has higher explana-
tory power than the black box models obtained by machine
learning techniques [8].

To our knowledge, this is the first application of the cue inte-
gration theory in human–computer interaction (HCI). While
cognitive psychology has timing tasks, such as moving target
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Figure 1. Moving target selection is an instance of temporal pointing,
an interactive task defined by three conditions: (1) discrete input (e.g.,
button press), (2) no or negligible spatial aiming demand (the finger is
on the button), and (3) a time window defining success and failure.

interception [35, 36], anticipation-coincidence [5, 24], and
sensorimotor synchronization [31, 32], there is no model avail-
able for moving target selection as it occurs in game and music
applications. Our model also borrows ideas from theories of
internal clocks [7, 17] and drift-diffusion [30].

In the rest of the paper, cue integration theory is explained
and a mathematical derivation of the model presented, before
three empirical studies. The first studied core assumptions
of the model in carefully controlled conditions. The model
showed high fit (R2 = 0.812) with experimental data. The sec-
ond examined a realistic gaming task (Flappy Bird), showing
improvements in model fit against a previous state-of-the-art
model that fails to deal with cue integration. In the third study,
a challenging game called Cake Tower was analyzed. Using
the empirical parameters obtained from the Flappy Bird study,
the model was able to predict user scores for Cake Tower,
an entirely different game (R2 = 0.86). The model also pre-
dicted user performance significantly better (R2 = 0.89) than
a previous model with no cue integration (R2 = 0.31).

RELATED WORK
Moving target selection is a variant of an interactive task called
temporal pointing [23]. Temporal pointing can be defined as
a task satisfying the following three conditions: (1) discrete
input (e.g., button press), (2) no or negligible spatial aiming
demand (the finger is on the button), and (3) a time window
defining success and failure (see Figure 1). Since temporal
pointing requires anticipation and quick response execution, it
is often difficult. Two temporal requirements define the task:
(1) temporal distance (Dt ) and (2) temporal width (Wt ). Dt is
the amount of time a user has to wait for the upcoming input.
After this, the user has a short time limit for executing input
action within Wt . However, users cannot directly know Dt and
Wt ; they must perceive them by encoding from the information
provided by the computer.

Surprisingly little research has been done on temporal pointing.
A recently proposed model [23] predicts user error rate when
the user perceives Dt and Wt from a blinking target. The
model was very accurate (R2 = 0.99), but the task of selecting
a blinking target is rarely found in real-world applications.
The authors also tried to explain the error rates in moving
target selection but with much less success (R2 = 0.87).

Our study modeled the process by which a user perceives Wt
and Dt in the important case of moving target selection. When
the target is moving on a display, there are multiple cues that
allow users to perceive Dt and Wt . We describe the process
by which such cues are perceptually encoded and integrated
by the user. This makes it possible to represent more realistic
HCI tasks that were not possible with previous models.

Studies of Temporal Tasks
Research on timing performance in psychology comes close to
our topic. The most closely related tasks include reaction, mov-
ing target interception [35, 36], anticipation-coincidence [5,
24], and sensorimotor synchronization tasks [31, 32]. While
these tasks are closely related to moving target selection, none
can directly explain it.

First, in the reaction task, participants should respond as soon
as possible to an unknown stimulus in time. The onset of
the response cannot be anticipated, unlike in temporal point-
ing, because no prior information is given. Second, in the
moving target interception task, participants must capture a
fast-moving object through a hand or another end-effector.
Intercepting a moving target requires gross spatial movement
of an end-effector (hand or foot) [4, 9], which is outside the
scope of temporal pointing. Also, interception is a very gen-
eral idea that subsumes many instances [37]: pursuit, head-on,
receding, and perpendicular. No single model exists for the
general interception task. Finally, anticipation-coincidence
and sensorimotor synchronization tasks deal with anticipatory
timing performed by small movements such as tapping a finger
with a metronome. Unlike temporal pointing, the task does
not judge an input as success or failure. The stimulus is simply
an impulse signal [12, 27, 31]. Some have studied stimuli
with long durations, rather than impulse, but did not report or
model users’ error rate [4, 27, 38, 40].

Although past studies did not directly model moving target se-
lection, they provide many clues to understand it. In particular,
the reliability of the temporal structure cue can be explained
from the scalar property of the internal clock [17, 7]. The
scalar property means that as the period of externally given
temporal rhythm becomes longer, reliability of timing esti-
mation decreases proportionally. Second, the drift-diffusion
model [30], a model of reaction processes, can explain the
precision of timing estimation obtained from the visually per-
ceivable motion of the target. We can assume that the user
accumulates and encodes the temporal information of the mov-
ing target within a limited cue viewing time (tc).

Cue Integration Theory
Several signals are available for anticipating the moment of
selecting a moving target. To explain how they are integrated
into an actionable representation to guide response, we as-
sume a probabilistic approach, which is natural in the face
of stochasticity and noise. We use the cue integration the-
ory to explain the different signals’ combination into a single
estimate helping the user to decide when to press down [15,
13, 20]. Cue integration theory assumes that perception is a
probabilistic process where each sensory channel conveys a
cue about some property of the moving target. However, each



Figure 2. The main idea of our model derivation. Moving targets provide two types of cues for the user to perceive temporal requirements (Dt and
Wt ) of the task: (1) temporal structure (or repetition) in motion and (2) visually perceivable relative motion between the target and the selection region.
The perceived Wt and Dt from each cue are merged into one percept via the cue integration process. Under the integrated temporal requirement, the
user decides when to attempt response execution (cµ ). A response distribution is obtained as a Gaussian distribution over time. Its standard deviation
is obtained by multiplying the precision of perception and action (cσ ) together. Integrating the final distribution from 0 to Wt and subtracting it from 1
gives error rate (E) in the task.

channel is unreliable to some degree. The integrated percep-
tion is a construct that represents a “decoded” sensation over
all unreliable signals. We use maximum likelihood estimation
to obtain a point estimate of the property being estimated. As-
suming that a single-cue estimate is unbiased but corrupted
by Gaussian noise, the optimal strategy for estimating the
integrated perception p̂ is a weighted average [13, 15]:

p̂ = ∑
i

wi p̂i where wi =
1/σ2

i

∑i 1/σ2
i

(1)

where wi is the weight given to the ith single-cue estimate
and σ2

i is that estimate’s variance. If two sensations exist
for one property, the variance of the integrated perception is
σ2 = σ2

1 σ2
2 /(σ

2
1 +σ2

2 ).

OVERVIEW AND DERIVATION OF THE MODEL
The model predicts error rate (E) in the moving target selection
task. Cues are provided visually as a movement of an object
(target), and a user must invoke a selection when the target is
within some selection area. Selection error rate is defined as
the ratio of the number of failed selections to the total number
of selections (E = #o f f ailed selections

#o f total selections ).

A key part of the model is about the mental processes of a user
perceiving Dt and Wt from two different cues: (1) temporal
structure and (2) visually perceivable movement of the target
(see Figure 2):

• Perception of Wt : A single target moving into one selection
region conveys a unique Wt to the user; it is the duration
from the moment the target enters the selection region to
the moment it exits (see Figure 1).
• Perception of Dt : Dt is the time from the user’s subjective

now to the moment when the target first contacts the se-
lection region. If the perception of Dt is accurate, the user
can more accurately release a response when the target will
contact the selection region.

From the perception of the task requirements (Dt and Wt),
the user decides when to press the button. We assume that a
user has an implicit aim point (µ) somewhere between 0 and
Wt , where t = 0 is the moment when the target contacts the
selection region for the first time. How precisely the user can
perform response execution at this moment is determined by
the following factors: (1) the reliability of the perception of Wt
and Dt , (2) the user’s timing ability, and (3) the precision of the

user’s response execution. The effects of these three factors
are aggregated into one input variance (σ2) in the model.

The resulting distribution of a user’s responses is repre-
sented by the Gaussian distribution over time with mean µ

and variance σ2. Then an error rate can be calculated as
1−

∫Wt
0 N (µ,σ2). We will now describe these ideas in depth.

Available Temporal Cues in Moving Target Selection
Moving targets convey temporal requirements of the response
via two main types of cues (see Figure 3). First, the motion
of the target often has a specific temporal structure. Consider,
for example, a gamer in a sniper role who is waiting for the
enemy. If enemy soldiers appear and disappear in front of the
sniper at certain intervals, the gamer will be able to predict the
next time to fire the gun from the repeated pattern.

Second, visually perceivable movement of the target is avail-
able, as the target passes closer to and finally through the
selection region. Imagine that a point object of speed s passes
through a selection region of length l that is distance d away.
This means that the user must wait d/s seconds and then per-
form the input within the following l/s seconds (see Figure 5).
When compared to the temporal structure of the stimuli, en-
coding of visually perceivable movement is more efficient but
is indirect; the process is easily corrupted by noise, depending
on the quality or the complexity of the given target movement.

Below we explain how Wt and Dt are perceived from each cue
and how the mean and reliability of each perception stand out.

Figure 3. In the moving target selection task, users can anticipate input
timing through (1) a pattern in which a target appears repeatedly in time
(i.e., temporal structure cue) or (2) the speed of the target moving toward
a selection region (i.e., visually perceivable movement cue).



Assumptions: Perception
Suppose a property A is perceived and estimated via sensory
modality X . In this case, the mean value of the percept can be
represented as p̂A

X and the reliability of the perception can be
expressed as standard deviation σA

X . Proceeding from previous
studies of human timing perception [25, 26], we can assume
that perceptions a user can obtain from two cues of a moving
target are Gaussian distributions.

We assume that the user perceives only one temporal target
– the same Wt but from two or more, different cues. In cue
integration theory, this assumption can be expressed as: p̂W

ts ≈
p̂W

vm = Wt and σW
ts ≈ σW

vm. The subscript ts represents the
temporal structure cue, and the subscript vm represents the
visually perceivable movement cue.

Note that unlike Wt , Dt is defined from the user’s “subjective
now,” so we cannot set a common “true” value for both cues
(see Figure 4). Let (Dt)ts be the Dt of the temporal structure
cue and (Dt)vm be the Dt of the visually perceivable movement
cue. By encoding both Dts from each cue, the user perceives
when the target will contact the selection region for the first
time. It is assumed that this moment is equally perceived
from different cues ( p̂D

ts ≈ p̂D
vm). However, the reliability of the

perceptions is assumed to be different for each cue: σD
ts , σD

vm.
The reliability of two perceptions σD

ts and σD
vm can be expressed

as below, from known properties of cognition.

Reliability of Dt Perceived from Temporal Structure Cue
The temporal structure of a moving target means how often
the selection should be repeated. Repeated selection allows
the user to perceive the moment at which the next input should
be performed. It is well known that the longer the period of
repetition (P), the lower the reliability of user estimates for
the next repeating moment [17, 7]. The slope of the decrease
in reliability as P increases depends on individuals’ timing
ability, but if we consider such a user-specific factor later, the
effect of P alone can be simply expressed as:

σ
D
ts = P (2)

For example, a metronome that beeps once every five seconds
is harder to follow than a metronome that sounds once a sec-
ond. This relationship between P and σts has been verified
for a wide range of P values from hundreds of milliseconds to
several seconds [31].

Figure 4. Assumptions of the model for the user’s perception from dif-
ferent cues.

Figure 5. When the target moves towards the selection region, the user
must estimate temporal distance (Dt ). We can assume that the shorter
the cue viewing time (tc), the less reliable the estimation (wider normal
distributions).

Reliability of Dt Perceived from Visual Movement Cue
In encoding of Dt from the visually perceivable movement of
the target, three variables shape the reliability of the perception:
(1) the complexity of target movement, (2) the remaining
distance between target and selection region, and (3) the time
allowed to observe the target movement (cue viewing time
tc). Among these factors, we want to express reliability as a
function of tc only. The remaining factors are included in the
model through empirically determined free parameters.

In drift-diffusion models [30, 6], people are assumed to ac-
cumulate evidence from external cues over time. However,
because the amount of information that one cue has is fixed,
the reliability of the information that a person can obtain is
bounded, no matter how long tc is. That is, given a sufficient
amount of cue viewing time (tc→∞), the reliability of the esti-
mation that can be encoded from a visually perceivable move-
ment cue converges to some specific maximum. In contrast,
if the cue viewing time is very short (tc → 0), this informa-
tion is very unreliable and the user’s inputs will (theoretically)
have infinite variance. Understanding this mechanism, we can
express the reliability of the encoded Dt as an exponential
function of the cue viewing time (tc):

σ
D
vm = 1/(eνtc −1)+δ (3)

where ν is a coefficient that represents the drift rate of in-
formation and δ is a constant that represents the maximum
reliability of the perception that can be achieved when tc is
long enough. These parameters aggregate the effects of other
factors of perceivable motion that affect the reliability of the
perception, except tc. Note also that, like temporal structure
perception, Equation 3 represents only the quality of infor-
mation the stimulus has, without regard to individual-specific
timing capability differences.

Cue Integration
Through the process described above, the user obtains esti-
mates of Wt and Dt from each cue. The mean and reliability
of Wt estimates are the same for the two cues, so they do not
change after the integration process. In other words, a user’s



final perception of Wt ( p̂W ) and its reliability (σW ) is:

p̂W = p̂W
ts = p̂W

vm and σ
W = σ

W
ts = σ

W
vm. (4)

However, the Dt perceived from each cue, or the moment
when the target touches the selection region for the first time,
has the same mean and different reliability. Through the cue
integration process, the final perception has the following
mean and reliability:

p̂D = p̂D
ts = p̂D

vm and σ
D =

σD
ts σD

vm√
(σD

ts )
2 +(σD

vm)
2

(5)

User-Specific Factors
From the perceived Wt and Dt , the user decides on a specific
moment to perform the actual input. Due to variance and noise,
the input response is distributed over time. The point at which
the mean of the distribution is located is called the implicit
aim point µ of the user. The implicit aim point is expressed
with a parameter (cµ ) representing its ratio to the perceived
temporal width:

µ = cµ · p̂W ≈ cµWt (6)

For example, if a user targets the first quarter of the temporal
width, the cµ value will be 0.25. In this study, we assumed
that the value of cµ indicating the implicit aim point of the
user does not change. Several previous studies too have shown
that cµ is constant for changes in Wt [23, 38].

By assuming that σW is negligibly smaller than σD because
Wt is much shorter than Dt , we determine the variance (σ ) of
the input distribution from both the reliability of perceived Dt
and the timing precision of the user. We define a parameter cσ ,
which aggregates all user-side factors affecting the precision of
response execution. This parameter takes into account both the
noise in response execution and the effect of the input device.
By multiplying σD by cσ , we get the standard deviation σ of
the user’s input response:

σ = cσ σ
D (7)

When t = 0, the target contacts the selection region for the
first time. The user’s inputs are represented by the Gaussian
distribution over time N (µ,σ2).

Error Rates
We can now compute error rates for a given temporal target.
Integrating the input distribution of a user in the interval of
temporal width [0,Wt ] yields the success rate, and subtracting
this from 1 results in an error rate (see Figure 2).

The user input responses (R) are distributed as a Gaussian of
mean µ and variance σ2 on the time axis:

R(t|µ,σ) =
1

σ
√

2π
e
−(t−µ)2

2σ2 (8)

The error rate is the value obtained by subtracting the area
of the successful input from 1. Since the successful input
represented in the distribution is from time 0 to Wt , the error

rate (E) can be expressed as:

E = 1−
∫ Wt

0
R(t)dt = 1− 1

2

[
er f (

Wt −µ

σ
√

2
)+ er f (

µ

σ
√

2
)

]
(9)

where er f (), known as the error function, appears in integrat-
ing a Gaussian distribution. By substitution from Equation 5,
Equation 6, and Equation 7 for σ and µ , the above equation
can be expressed as:

E = 1− 1
2

[
er f (

(1− cµ)

cσ

√
2
·Wt

Dt
)+ er f (

cµ

cσ

√
2
·Wt

Dt
)

]
(10)

where, for simplification, Dt is used in the denominator in line
with this equation:

Dt = P/
√

1+(P/(1/(eνtc −1)+δ ))2 (11)

Here, Dt is different from (Dt)ts or (Dt)vm and can be regarded
as the effective temporal distance perceived by the user through
the cue integration process. If tc is 0, Dt is simply P, and if tc
is very long, Dt converges to P/

√
1+(P/δ )2:

By defining index of difficulty ID (= log2(Dt/Wt)), which is
a single dimensionless variable governing this equation, we
can further simplify Equation 10 as follows:

E = 1− 1
2

[
er f (

(1− cµ)

cσ 2(ID+0.5) )+ er f (
cµ

cσ 2(ID+0.5) )

]
(12)

The model can be used no matter the shape of the target, speed,
movement pattern, or selection region shape.

PARAMETER EXPLORATION
The model has four free parameters

[
ν ,δ ,cσ ,cµ

]
. In this

section, we explain how changes in each free parameter affect
error rate.

Effect of varying cσ on error rate: cσ is a parameter rep-
resenting the noise generated in the process of response ex-
ecution. When cσ becomes larger, the error rate of the user
increases. Large changes in cσ for a single user should not hap-
pen without changes in input device or user task [23]. In other
words, if the input device or the task changes, this parameter
would be re-estimated.

Effect of varying cµ on error rate: By setting cµ to 0.5, a
user aims at the center of the target (Wt). That is the optimal
aim point according to this model. However, users typically
aim for the beginning of the target with cµ less than 0.5 (i.e.,
negative mean asynchrony [23, 31]). Because aiming strategy
can change during a task, this parameter may change. That
said, after learning, large changes are rare.

Effect of varying ν on error rate: ν is called the drift rate,
which means the rate at which the user receives information



Figure 6. ν and δ are empirical parameters in the model. ν determines
the speed at which the user encodes a motion cue. The δ is the minimum
temporal distance that can be encoded from the motion cue. As shown
in the upper row in the figure, the user’s error rate does not fall below
a certain level even if the ν value increases. However, the bottom row
shows that when the δ is small, user error may be reduced to near zero
if tc is sufficient.

from the moving stimulus. Therefore, in a limited cue viewing
time condition, a higher ν will lower the user’s error rate. For
more continuous changes in tc, this parameter determines the
rate at which the user’s error rate converges to its minimum
value (see Figure 6). This parameter is user- and possibly
stimulus-specific. It would be re-estimated if the user group
or stimulus type changes.

Effect of varying δ on error rate: δ is the maximum reliabil-
ity of the perception a user can encode from a moving target as
a result of a sufficiently long cue viewing time. It represents a
lower bound on the user error rate. Although many hypotheses
can be presented for how δ and ν are determined, our work
assumes that the various visual characteristics of a particular
moving target (complexity of motion trajectory, color of target,
shape of background, etc.) are the main determinants limiting
the amount of information the user can obtain.

STUDY 1: MODEL VALIDATION
The first experiment evaluated the overall fit of the model
with empirical data in a closely controlled task. The experi-
mental setup and apparatus used permit assessment of model
predictions against three variables: (1) implicit aim point µ of
participants, (2) standard deviation σ in input timing, and (3)
error rate E.

Method
Participants: 18 paid participants (10 females) were recruited
from a local university. The average age of participants was
24.8 years (SD = 3.4), and 15 had corrected vision. No partici-
pant was colorblind. The 17 participants with private music
training averaged 5.36 (SD = 2.96) years of experience.

Design: The experiment was a 6×2 within-subject design with
two independent variables: cue viewing time and target speed.
The levels were the following:

• Cue viewing time (tc): 0, 50, 100, 150, 200, and 250 ms
• Target speed: SLOW condition (1.162 m/s or 167 LEDs/s)

and FAST condition (2.324 m/s or 333 LEDs/s)

@t = -t
c * repeats every P

W
t
 = temporal width t

c 
= cue viewing time

target

@button click

t = 0

with a successful selection

fail success

Success feedback

t = W
t

Selection Region

Figure 7. In Study 1, participants performed a task of selecting a 1-
dimensional moving target through a button click. The target moved
from left to right at a specific speed and the participant was instructed
to click the button when the target is in the blue selection region. At the
moment of each button click, the target motion stopped and green visual
feedback was given if the click was successful.

Task: Participants were asked to perform a task of selecting
a point-shaped target moving in a straight line (see Figure
7). We define cue viewing time (tc) as the time to reach the
selection region after target appearance (see Figure 7). Timing
and error rates are measured according to the change of tc.
The temporal width and the period of the target’s appearance
were fixed and unchanged: P = 2,000 ms and Wt = 100 ms. tc
was controlled by hiding a certain portion of the initial target
movement. When tc is zero, the task becomes a blinking target
selection, and we can expect an error rate of about 70% from
the given fixed P and Wt [23].

Apparatus: In order to minimize the effect of display la-
tency, we implemented a customized high-speed 1D moving
target selection experiment device. The apparatus consists
of four components: an LED strip, an LED driver board, an
experiment driver board, and a dummy mouse.

The LED strip consists of 3 meters of Adafruit DotStar2 mod-
ule (144 LEDs/m). The center of the selection region is always
placed at the 250th LED. At most, 117 LEDs (0.82 m) were
used in the fastest and longest (333 LEDs/s, tc = 250 ms + Wt
= 100 ms) condition. The LED driver board (Arduino UNO
board, Adafruit DotStar Library3 with hardware SPI) controls
the LED strip to display the selection region, moving target,
and success feedback (see Figure 7). The measured frame
rate was 333.3 Hz; therefore, the achievable maximum speed
without pixel skipping is 2.324 m/s (333 LEDs/s). We choose
an opponent color pair (yellow–blue) to maximize the color
contrast; a dark blue color (#000001) for the selection region
and a moderate yellow color (#202000) for the moving target.4
For input device, we directly connected the left button of a
dummy mouse to the experiment driver board. The mouse
button was activated with 55 cN force at 0.4 mm displacement.

The experiment driver board (Arduino 101) sets parameters
and records timestamps of input and LED events. Two se-
rial pins and three digital pins interconnect the two driver
2https://learn.adafruit.com/adafruit-dotstar-leds
3https://github.com/adafruit/Adafruit_DotStar
4HEX colors are for the LED strip, which will not properly display
on a computer screen

https://learn.adafruit.com/adafruit-dotstar-leds
https://github.com/adafruit/Adafruit_DotStar


Figure 8. Model validation for µ , σ (top row), and error rate (bottom
row). At the µ value measured at a specific tc (around 100 ms), a user re-
active timing strategy that we did not expect was observed (cµ increased
to 0.6). However, that did not have much effect on the fit of the model to
the error rate (R2 = 0.812). The model fit well with σ values (R2 = 0.975).

boards for serial communication and event timing synchro-
nization. We collected the following events: a target appears
(T1)-disappears (T0), a target enters (A1)-exits (A0) the se-
lection region, and a button is pressed (B1)-released (B0).5
Timestamps were added internally to all events in 0.1 ms res-
olution. Event logs with the corresponding timestamps were
transferred to a PC and stored. Hence, the event timings were
rigorously maintained to <0.5 ms accuracy (mean error) and
<1.5 ms precision (standard deviation).

Setup and Procedure: Participants sat on a regular office
chair and looked at the front wall 2.8 meters away. On the
wall, the LED device was installed horizontally at the eye
level of the participants. We aligned the center of the selection
region in front of participants. Then the experimenter briefly
demonstrated the experiment and each participant was given
a practice session until accustomed. Participants were asked
to select as many targets as possible without skipping and
instructed to take a break after completing one condition.

All task conditions were assigned randomly to the participants.
There were 40 trials for one condition, and each condition was
given twice. Therefore, participants performed, in all, 960
trials (40 trials × 12 conditions × 2 repeats). It took about
an hour to finish. We logged all raw data of each participant.
This includes not only the error rates of the input but also the
timing of all the events.

Results
Of the 40 trials measured for one condition, the last 30 were
included in analysis. Since each condition was repeated twice,
the following results were analyzed from, in all, 60 trials for
each condition. We ran statistical tests for each independent
measures on the error rate, using two-way repeated-measure
analysis of variance (RM-ANOVA). We applied Greenhouse-
Geisser correction when the sphericity assumption was vio-
lated. We then compared the empirical µ , σ , and E with the
model.
5A successful trial means a B1 event positioned between A1 and A0

Effect of Target Speed
The effect of target speed on error rate was not statistically sig-
nificant (F(1,17)=2.998, p = .101). The average error rate was
0.36 (SD=0.259) for SLOW condition and 0.34 (SD=0.261)
for FAST condition. The interaction effect between target
speed and cue viewing time on error rate was significant
(F(5,85)=3.082, p = .013). According to the pairwise t-test,
the difference in error rate with speed was statistically sig-
nificant at tc = 0.05 s (p = .021) and 0.25 s (p = .007).
When tc was 0.05 or 0.25, the average error rate was 0.69
(SD=0.094) and 0.31 (SD=0.171) in the FAST condition and
0.718 (SD=0.113) and 0.259 (SD=0.188) in SLOW, respec-
tively.

Effect of Cue Viewing Time
The effect of cue viewing time on error rate was statistically
significant (F(2.12,36.0)=122.03, p < .001). As previously
reported [23], and as we expected, the error rate was 70.5%
(SD=10.3%) when the tc was zero. However, as tc increases to
0.25, the error rate decreases to 28.6% (SD=17.9%) with the
aid of a visually perceivable movement cue (see Figure 8).

Model Fitting
Testing Assumptions about σ and µ

Since the main effect of target speed was not significant and
our model can aggregate the effect of speed through ν and δ

parameters, the results presented in this subsection are aver-
aged over two target speed levels (see Figure 8). All the curve
fittings in Study 1 were carried out with the fitnlm function
provided in MATLAB.

In the derivation process for the model, we assumed roughly
that µ is always constant for the same Wt but the actual µ

has changed from 0.2 to 0.6 as tc changes. The overall mean
value of µ was 0.34 (SD=0.29). Particularly in sensorimotor
synchronization studies, participants are known to aim mainly
at the stimulus front [23, 31] (i.e., negative mean asynchrony).
On the other hand, in our study, when tc was around 0.1 s,
participants were starting to aim at the center of the selection
region (see Figure 8).

The average value of σ was 0.064 (SD=0.051) and the model
(Equation 7) had very accurate fit for σ values (R2 = 0.975;
see Figure 8). The σ value is the integration result of σD

ts
and σD

vm, and from this high fit we showed that there is no
problem with our two assumptions about σ : (1) diffusion-drift
accounting for reliability of visual cues and (2) maximum
likelihood integration of temporal and visual cues.

Table 1. The experimental results for the existing model (CHI’16) and
the results from the three user studies for this paper, summarized to-
gether.

Studies cµ cσ ν δ R2

Blinking (CHI’16) 0.169 0.080 N/A N/A 0.997
Flappy Bird (CHI’16) 0.07 0.008 N/A N/A 0.87
Validation Overall (this paper) 0.295 0.083 20.2 0.366 0.812
Validation Fast (this paper) 0.31 0.085 20.7 0.354 0.865
Validation Slow (this paper) 0.28 0.081 19.7 0.377 0.753
Flappy Bird (this paper) 0.118 0.0316 N/A 0.484 0.961
Cake Tower (this paper) 0.496 0.186 28.7 0.191 0.886
Cake Tower (CHI’16) 0.266 0.031 N/A N/A 0.31



Figure 9. Flappy Bird is a temporal pointing game where temporal
repetition cues (repeated jumps) and perceivable motion cues (avoiding
approaching obstacles) are both available (left). Our model predicted
the user’s error rate better (R2 = 0.961) than an existing state-of-the-art
model (R2 = 0.87) (right).

Error Rates
Since P and Wt were fixed in this experiment, we have fitted
our final model with the empirical error rates for different tc.
As a result, the overall fit showed a high R2 (0.812) value even
if the implicit aim point of participants did change in line with
tc, unexpectedly (see Figure 8). The model showed a higher fit
for FAST targets (R2 = 0.865) and a lower fit for SLOW targets
(R2 = 0.753). This is a large improvement because the existing
model cannot account for any change in error rate with tc. The
four free parameters obtained from the fit are summarized in
Table 1.

Discussion
The model faithfully predicted the empirical error rates, which
were obtained by using highly accurate experimental equip-
ment with minimum system latency.

We also tested the assumptions made by the model, especially
on the implicit aim point (µ) and the timing variance (σ )
after the cue integration process. At a specific cue viewing
time (around 100 ms), we observed a user reactive timing
strategy that we did not expect. If tc was similar to participants’
reaction time, they tried to press the button as soon as the
target appeared, instead of anticipating the time the target
would reach the selection region via visual information. In
that regard, some participants informed us that they selected
the target via reaction rather than anticipation for some task
conditions, and we suspect that tc of 0.1 s is the case. This
reactive behavior of a user is not covered by our model, which
is something that game designers who use our model should
be aware of. However, it did not have much effect on the
robustness of the overall model (R2 = 0.812).

The values we obtained for the four parameters of the model
deserve a comment. First, the cσ and cµ values were similar
to those measured in past blinking target selection studies [23,
22]. This shows the robustness of these model parameters.
The ν value is measured as 20.2, and at this high drift rate,
the user can accumulate all the information that the visually
perceivable movement cue has, even if only a tc of 0.3 seconds
is given. Here δ was measured to be 0.366, which is only
18% of target appearing period (P=2 s). This means that the
reliability of the visually perceivable movement cue is five
times higher than that of the temporal structure cue when tc is
long enough.

STUDY 2: REVISITING FLAPPY BIRD
Flappy Bird is a game where a bird is repeatedly jumped to
maintain its altitude and avoid the obstacles that follow. Flappy

Bird can be regarded as a moving target selection task in which
temporal structure cues and visual motion cues are given at
the same time (see Figure 9). A player should repeat the input
at specific intervals (P) to keep the bird at a certain altitude,
which is a temporal structure cue to help estimate the timing
for the next jump. The player also estimates the moment of
the next jump from the trajectory of the bird, the visual motion
cue, to the obstacle. One previous study [23] designed the
jump period and temporal width of the game as a total of 12
P×Wt combinations and let the participants play it (for the
exact conditions, see the appendix of [23]).

The experimental method used for data collection is given
by the original authors [23]. They used the model developed
for the blinking target selection task to analyze the empirical
error rate in Flappy Bird. Since the model does not consider
visually perceivable motion cues, it achieved significantly
worse fit (R2 = 0.87) than a task of selecting a blinking target
(R2 = 0.997).

Reanalysis with the Cue Integration Model
We reanalyzed those empirical data [23] with the cue integra-
tion model. In Flappy Bird, the target and selection region can
be observed by the player for a sufficiently long time, so tc
should be infinite (or very large). Then the exponential decay
function in σD

vm (Equation 3) becomes zero and only the three
free parameters apart from ν are significant. Fitting our model
to the data with the fitnlm function provided by MATLAB, we
obtained three parameters as in Table 1.

Our model showed a significantly better fit (R2 = 0.961) than
the previous model (R2 = 0.87). The user-specific precision
value cσ , which is measured lower (0.0316) than when there is
only a temporal cue (typically around 0.08 [23, 22]), reflects
the task becoming easier for the user as visually perceivable
cues are added. This trend can not be reflected in the previous
model [23]. Instead, the lower error rate due to the addition of
the visually perceivable cue is resulted as an unrealistic lower
user precision value (cσ =0.008). On the other hand, the δ was
measured similarly to in Study 1 using our model. This lends
more support to the model.

STUDY 3: MODELING CAKE TOWER
Cake Tower is a commercial game based on moving target
selection that is being served to children in a digital activity
space in Korea.6 Cake Tower can be played with just one
button and the player’s goal is to stack the cake as high as
possible. The way to stack a cake is simple in principle, but it
gets harder and harder as the game advances. With a certain
temporal pace, a new cake layer appears alternately from the
left or right corner of the screen. The new layer is always
the same size as the topmost layer of the tower the player has
accumulated so far. The new layer flies at a constant speed
towards the center of the screen, and the player must drop this
layer on top of the cake tower. It is ideal to drop the layer
completely on the top of the cake tower, but if it overlaps only
partially, the non-covered part is cut off and the size of the
layer that the player must stack next time will be reduced. If
the player fails to accumulate any more cake, the game ends
6https://envisible.squarespace.com/new-index-3
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Figure 10. We replicated the commercial game Cake Tower to compare
user performance with model predictions.

and the height of the tower accumulated until then is the score
(see Figure 10).

Method
Participants: 18 paid participants (7 female) were recruited
from a local university. They were, on average, 27.6 years old
(SD=5.88), and 8 had corrected vision. Their experience of
receiving music training, excluding public education, averaged
3.26 years (SD=4.92).

Experimental Design: The experiment was a 2×2×3 within-
subject design with three independent variables: period of
cake appearance, temporal width, and cue viewing time. The
levels were the following:

• Period of cake appearance (P): 800 and 1,500 ms
• Temporal width (Wt ): 80 and 160 ms
• Cue viewing time (tc): 50, 150, and 250 ms

We maintained the initial size (w) of the cake throughout the
experiment (165 pixels, 42.5 mm). The speed of the cake (s)
was determined as 2w/Wt accordingly. The distance (d) from
the corner of the screen to the center of the screen where the
cake should be placed was s · tc, so the cake was only visible
for tc.

Apparatus: The application was implemented with Unity
(version 5.6.2) on Mac OS X 10.12.4 and shown on a mon-
itor (Samsung SyncMaster 205BW, measured avg. display
lag = 8 ms) with 1680 × 1050 resolution. A MacBook Pro
(Retina, 15-inch, early 2013) with 2.7 GHz Intel Core
i7 and 16 GB RAM and NVIDIA GeForce GT 650M graph-
ics card was used. Participants performed the task by clicking
the left button of a Logitech G9 (1000 Hz) mouse fixed to
the desk.

Procedure and Task: After the participants had filled out a
demographic questionnaire form, the experimenter showed
how to perform the task. When participants said that they
understand the rules of the game, they started the experiment
without any practice. At the beginning of each trial of the
experiment, participants first observed four dummy cakes fly,
which were generated with the corresponding period (P) value
of the condition. This was to allow the temporal structure
cue to be generated before actual cake stacking-up begins.
Participants were asked to stack as much cake as possible.

The experiment was conducted in a quiet room with the par-
ticipants sitting at a desk. They were encouraged to click the
button with their preferred hand, but all were starting with their
right hand. Twenty trials were conducted for each condition,
and all conditions were given to each participant in random
order. As a result, each participant performed, in total, 240
trials for an hour.

Logging: We logged all the raw data of the task. This includes
not only the number of layers of cake but also the task situation
when the participant clicked the button.

Monte Carlo Simulation
Cake Tower is a moving target selection task in which Wt
changes because the cake requires more precise timing as it
gets higher. The model does not offer a closed-form equation
predicting how many cake layers a player can stack, only the
probability of failing for a given cake piece. We therefore
simulate a virtual player with the model. It plays the game
over and over again, allowing us to estimate the scores the
user might obtain.

Player characteristics can be represented via model parameters
(cσ ,cµ ,ν ,δ ). Each player performs Gaussian inputs with a
standard deviation σ centered at µ for the given Dt and Wt of
the current cake layer. This process is repeated several times,
similar to the Monte Carlo method. The input generated from
the random function is used to determine how much the next
cake layer should be reduced in size, which is repeated until
the virtual player fails to input. An estimate of a gamer’s score
can thus be obtained.

Results and Discussion
The first 5 of 20 trials in each condition were excluded to take
into account the learning effect. In the remaining 15 trials,
the average height of the final cake tower was obtained. The
overall average score of participants was 2.16 (SD=1.83).

Obtaining Model Parameters from Study 1
We first assume a virtual player from the four parameter values
measured in Study 2 and compare the score for the simulated
Cake Tower with the actual empirical data. The ν parameter,
which was not measurable in Study 2, was replaced by the
measurement in Study 1.

While it was a completely different game, the model could
predict the Cake Tower scores reasonably well. Predictions
show a high linear correlation with actual score data (R2 =
0.86 (see Figure 11). This result shows that the model can be
used to predict gamer performance across games when input
device and user sample are relatively similar.

Model Fitting
We want to fit the player’s score predicted through Monte
Carlo simulation and the score measured in the actual exper-
iment against each ID condition. The simulation returns the
expected cake tower height from the four given free param-
eters. Then, an error sum of squares between the returned
values and the actual measurements is determined as an ob-
jective function and the optimal parameters are found through
the patternsearch function provided by MATLAB. Pattern



Figure 11. Using model parameters obtained in another game (Flappy Bird, Study 2), we predicted player scores in the Cake Tower game. The Monte
Carlo method was used. The ν parameter, which was not measurable in Study 2, was replaced by the measurement in Study 1 (left). As a result, the
predicted scores show a high linear relationship with the empirical data. Compared to the previous model (CHI’16, middle, R2 = 0.31), the new cue
integration model predicts gamer scores much better (right, R2 = 0.89).

search is an effective optimization technique for minimizing a
stochastic objective function such as Monte Carlo simulation.

The cue integration model shows a strong correlation with
empirical data (R2 = 0.89). With simulation via the previous
model [23], model fit was considerably worse (R2 = 0.31; see
Figure 11). The previous model has difficulties due to the
fact that visual timing estimation is more dominant in Cake
Tower than in Flappy Bird. Indeed, the ν (28.7) and δ (0.191)
measured through the cue integration model demonstrate a
more effective visual motion cue in Cake Tower than in Study
1 or Study 2.

The cµ value obtained (0.496) indicates that participants
mainly aimed at the central point of the temporal target, unlike
in previous studies (see Table 1). This is because subjects
playing Cake Tower had to stack a target (i.e., flying cake
layer) of the same size as the selection region, unlike in Study
1 and 2, where the moving target was assumed to be a point.

APPLICATION: DESIGNING GAME-LEVEL DIFFICULTY
Many studies have been conducted on how to set the appro-
priate difficulty level of a game [33, 2, 16, 41, 39, 28, 19, 1,
34]. Unlike previous work, the cue integration model offers
an analytical–predictive method for resolving parameters like
target speeds, cue viewing times, target sizes, and selection
region. Three steps are required:

(1) The designer first determines the time period (P) the player
needs to repeat the input. In a music application, P would be
the tempo of the music. In the case of Flappy Bird, the time
period of the jump, which must be repeated to keep the bird’s
altitude constant, was P.

(2) The designer should then understand how much cue view-
ing time (tc) is provided. The corresponding value Dt can then
be computed. At this point, the values of ν and δ , as listed in
Table 1, can be used:

• tc is 0 s: The target suddenly appears in a selection region
(e.g., a blinking target)→ Dt = P.
• tc is from 0 to 0.3 s: The target appears and disap-

pears quickly, or is often blocked by obstacles (e.g., a
real-time shooting game or a baseball batting game) →
Dt = P/

√
1+(P/(1/(eνtc −1)+δ ))2.

• tc is long enough: The size of the target and activation
region is small and the player can always observe the move-

ment of the target (e.g., Flappy Bird or Dancing Line, and
most temporal pointing games)→ Dt = P/

√
1+(P/δ )2.

(3) Finally, after Dt is obtained, the designer can predict from
Equation 10 what error rate players will have for a particular
Wt value. After finding of the Wt value that produces the
desired error rate, the size of the selection region and the
movement speed of the target can be determined.

For example, in a rhythm game, such as Beatmania, let us
assume that the designer wants to ramp up error rate to 30%,
50%, and 70% for easy, medium, and hard difficulty levels,
respectively. If the BPM (Beats Per Minute) value of the given
background music is about 150, the P value is 0.4 seconds. If
there is a design constraint that the tc value should be fixed
at 0.1 seconds, Dt becomes 0.3 s by Equation 11, using pa-
rameters borrowed from Study 1. Finally, from Equation 10,
we can see that the required Wt for the game levels is 58 ms,
35 ms, and 20 ms, respectively. On this basis, the designer
can adjust the speed of the target or the size of the selection
region.

CONCLUSION
This paper has presented a theory and mathematical model for
predicting error rates in moving target selection tasks. The
model is derived from a known cognitive theory called cue
integration theory. To explain how users form an integrated
percept of a rapidly moving target, the theory builds on a prob-
abilistic account of sensorimotor performance. It estimates an
upper bound of performance achievable by a perfect decoder.
Across three studies, we have shown that this optimality as-
sumption fits empirical data of trained users surprisingly well.
This makes the model potentially useful in the design of gam-
ing and music applications, where it can be used to design
critical parameters like speeds, selection regions, and viewing
times of moving targets.
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