
Button++: Designing Risk-aware
Smart Buttons

Eunji Park
Graduate School of Culture
Technology, KAIST
Daejeon, Republic of Korea
tracy1829@kaist.ac.kr

Hyunju Kim
Graduate School of Culture
Technology, KAIST
Daejeon, Republic of Korea
fullmoon83@kaist.ac.kr

Byungjoo Lee
Graduate School of Culture
Technology, KAIST
Daejeon, Republic of Korea
byungjoo.lee@kaist.ac.kr

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada
ACM 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188645

Abstract
Buttons are the most commonly used input devices. So far
the goal of the designers was to provide a passive button
that can accept user input as easily as possible. Therefore,
based on Fitts’ law, they maximize the size of the button
and make the distance closer. This paper proposes But-
ton++, a novel method to design smart buttons that actively
judge user’s movement risk and selectively trigger input.
Based on the latest model of moving target selection, But-
ton++ tracks the user’s submovement just before the click
and infers the expected error rate that can occur if the user
repeatedly clicks with the same movement. This allows de-
signers to make buttons that actively respond to the amount
of risk in the user’s input movement.

Author Keywords
Button design; smart buttons; moving target selection; sub-
movements; pointing; Fitts’ law; temporal pointing.

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Introduction
With the advent of graphical user interfaces (GUI), buttons
have become the most widely used input device in Human-
Computer Interaction (HCI). Designing better buttons is

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 1

https://doi.org/10.1145/3170427.3188645


important for usability in many areas, such as typing, gam-
ing, and playing music [12, 9, 5, 14, 10]. Designers have
mainly worked on improving the activation area [15], acti-
vation point [12, 5, 9], and location of the buttons [4]. The
ultimate goal of previous studies were to provide a passive
button that can accept user input as easily as possible.

Button inputs, however, cannot be undone unless a sep-
arate cancellation function is implemented in the system.
This feature of button input can cause irreversible problems
in critical tasks. However, it is difficult to determine whether
or not an already-pressed button input is an error. User
errors can only be defined by knowing the user’s original
intent, but in most cases the intent is not explicitly trans-
mitted to the computer. For this reason, researchers have
been trying to guess the user’s intentions from a few visible
indicators of user behavior.

For example, when a user performs a pointing task, the in-
put points are distributed near the center of the target. From
the variance of the input points, it is possible to understand
how precisely that person wanted to press [17]. However,
because the variance of an input point is a statistical value
obtained by analyzing multiple button inputs, it cannot be
determined for individual button clicks.

In this study, we propose Button++, a smart button that can
determine how much precision (or risk) a user is willing to
take for a single click. Based on the latest model of moving
target selection [10], Button++ tracks the user’s submove-
ment just before the click and infers the expected error rate
if the user repeatedly clicks with the same level of precision.
In a pilot study to verify this, we conducted a time-limited
pointing task. Button++ allows rejection of triggered events
from high-risk input movements, thereby preventing button
input errors in critical situations.

Figure 1: Overview of the technique: Button++ logs the cursor
trajectory until the user clicks the button and segments it into
submovements. The final submovement is then analyzed through
the moving target selection model, from which Button++ can infer
the risk taken by the user for each click. In this case, risk refers to
expected error rates of the pointing, which depends on the user’s
bias in the speed-accuracy trade-off.

Related Work
The task of pressing a button necessarily involves point-
ing movement. The pointing task can be divided into spa-
tial pointing, which selects a target in space, and temporal
pointing, which selects a target that exists in time [12]. Here
Button++ calculates the risk of the user’s movement to the
former task.

Many studies have been conducted to understand the dis-
persion of input points in spatial pointing [16, 3]. From an
information theoretical perspective, they attempted to ex-
plain the speed-accuracy trade-off, which is the relationship
between the time taken for pointing and the variance of the
resulting input point. As users take higher risks, the point-

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 2



ing time decreases, but the variance of the input points in-
creases. Thus, if the expected variance of input points can
be found for each click, it can be used as an indicator of the
amount of risk a user takes.

However, the variance of the input points is a statistical
value that is difficult to determine from a single pointing
movement. One study [16] has attempted to express the
expected variance of button inputs as a function of each
pointing time, through Fitts’ law. However, it is difficult to
track the pointing time in a real environment [2], and their
model does not take into account the independent effect of
the target width.

Unlike previous studies, Button++ calculates the expected
error rate of a single click based on kinematic measure-
ments rather than statistics. Interpreting the cursor trajec-
tory through a kinematic measure enables a deeper un-
derstanding of the phenomenon than the information the-
oretical viewpoint [7, 8, 11]. In particular, Button++ can re-
flect the effect of button size on the prediction of error rate.
Button++ is also deeply related to techniques such as The
Bubble Lens [13], which attempted to improve the usabil-
ity of the button input by measuring the kinematics of the
cursor trajectory.

Working Principles of Button++
Button++ logs the trajectory that a user moves to click the
button. Immediately after the click, the trajectory is divided
into several submovements by analyzing its speed profile.
And from the kinematic properties of the last submovement
just prior to the click, Button++ can infer the expected error
rate.

Figure 2: The last submovement
that occurred just before the user
clicked the button can be
considered as a process of moving
target selection. Using the latest
model, Button++ accurately
predicts the expected error rate of
the last submovement.

More specifically, Button++ analyzes the last submovement
through the recently published model of moving target se-
lection [10]. In the moving target selection task, users must

perform input when a moving target reaches a selection
region. In this task, the target moves quickly and the user
simply presses the button without moving. When the clicks
that occur while the target is within the selection region are
defined as successful trials, the error rate (E) can be ex-
pressed as:

E = 1− 1

2

[
erf(

(1− cµ)
cσ
√
2
· Wt

Dt
) + erf(

cµ

cσ
√
2
· Wt

Dt
)

]
where, Dt = (

1

eνtc − 1
+ δ), IDt = log2(Dt/Wt)

Here, tc is the time allowed for the user to observe the
movement of the target before reaching the selection region
(cue viewing time), ν is the rate at which the user accepts
information from the target, and δ is the baseline noise of
the user’s timing precision. All the values except tc are de-
termined through experiments and the values reported in
the previous study can be used [10]. Wt is the time it takes
for the target to pass through the selection region. For ex-
ample, Wt is w/s when a target of speed s passes through
a selection region of size w (see Figure 2).

The process from the last submovement to the click is con-
sidered to be a moving target selection task given to the
user. In this case, the cursor is the moving target and the
button becomes the selection region. tc is the duration of
the submovement and Wt is determined from the average
speed of the submovement and the size of the button (see
Figure 2). Finally the IDt can be obtained through Dt and
Wt, which is the index of difficulty of the last submovement
when considered as a moving target selection task. At this
time, submovement with high IDt value is a risky input
leading to a high error rate. With the individual ID values
measured from each trial, Button++ can filter out risky input
attempts.

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 3



Implementation
Technically, Button++ requires implementation of two func-
tions: (1) trajectory logging, (2) submovement segmen-
tation. First, trajectory logging is implemented through
Libpointing library [1]. The library allows us to get the
raw input value of any pointing device. In this implementa-
tion, all trajectories of the cursor are logged, but in actual
deployment, it is sufficient to only track the last submove-
ment immediately before the click. Second, the submove-
ment was segmented by applying the persistence1d [6]
algorithm to the speed profile of the logged cursor trajec-
tory. For further details of the submovement segmentation,
please refer to the previous study [11].

Pilot Study
In order to see if Button++ can accurately predict the ex-
pected error rate for each button click, we designed and
conducted a pointing experiment according to ISO 9241-9
standard.

Participants: Six students from the local university (2 males,
4 females) were recruited. The average age of participants
was 27.2 years (σ=3.97). All the participants were right-
handed.

Design: The experiment followed a 2×3×6 within-subject
design with three independent variables: target width, target
distance and time limit. The levels were the following:

• Target width: 4.8 and 8.4 mm
• Target distance: 48, 144, and 240 mm
• Time limit: 300, 400, 500, 600, 700, and 800 ms

Figure 3: Participants in the pilot
study performed a time limited
pointing task.

Twenty angle of approaches were tested for each target
width-target distance condition. As a result, participants
performed 120 pointing trials for each time limit condition.
A time limit condition did not change to the next condition

until all corresponding width-distance conditions had been
completed. The time limit conditions are given in random
order, and within a time limit condition, the target width and
target distance are given in random order. In the end, 4320
input events from 6 participants were logged.

Task : Participants had to select two circular targets on the
screen. After clicking on the blue target, clicking on the red
target ended the trial (see Figure 3). If the participant did
not click on the red target within the given time limit after
clicking on the blue target, the red target disappeared. Even
if the red target was disappeared due to time limit violation,
participants had to click to go to the next trial. If the partic-
ipant clicked inside the red target (or the disappeared red
target), the trial was considered successful. Participants
were asked to make pointing as quickly and accurately as
possible.

Apparatus: The application was implemented on a 3 GHz
desktop computer (Mac mini, 10.13.1 High Sierra). A 27-
inch LED monitor (LG 27UD69P) was used and the res-
olution of the task screen was 2560×1440 pixels. Point-
ing device was two-button wired optical mouse (Samsung
SNJ-B138) with a resolution of 400 DPI. The cursor was a
standard arrowhead pointing to the upper left.

Procedure: Participants performed the task with the same
posture as they were using the computer. They sat on a
regular office chair and the monitor was installed at the par-
ticipant’s eye level. Before the experiment, experimenter
briefly introduced the task to the participants. A practice
session was given until participants were accustomed to the
task.

Result and Discussion: Dt and Wt were calculated from
the tc value and average speed value of the last submove-
ment of each trial. At this time, other parameters were used

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 4



as they were measured in the previous study (ν=20.2,
δ=0.366) [10]. Finally IDt values and success indicators
were obtained for each of 4320 trials. To calculate the er-
ror rate, we binned the indicators of success from a certain
number of IDt values.

The R2 value of the model fit for the error rate binned from
each of the 350 IDt values was 0.949. The R2 value for
the error rate binned from 25 IDt values was 0.823 (see
Figure 4). This shows that Button++ can obtain the ex-
pected error rate with high precision for individual click
events. This is in contrast to the previous model [16], which
achieved a lower R2 value (0.846) even after maximum av-
eraging. This difference occurs because only the moving
target selection model can consider the effect of the target
width on the error rate.

Future Work
The study proposed Button++, a novel methodology for
designing smart buttons that can infer expected error rates
for a single button click. Future study will reveal more about
the various benefits that Button++ can bring to its users.

Acknowledgement
This research was supported the by Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science and ICT
(NRF-2017R1C1B2002101).

REFERENCES
1. Géry Casiez and Nicolas Roussel. 2011. No more

bricolage!: methods and tools to characterize, replicate
and compare pointing transfer functions. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology. ACM,
603–614.

Figure 4: Results from the pilot study: Button++ did very well
explain the experimental measurements, even though we did not
remove the pointing outliers at all.

2. Olivier Chapuis, Renaud Blanch, and Michel
Beaudouin-Lafon. 2007. Fitts’ law in the wild: A field
study of aimed movements. (2007).

3. Yves Guiard and Olivier Rioul. 2015. A mathematical
description of the speed/accuracy trade-off of aimed

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 5



movement. In Proceedings of the 2015 British HCI
Conference. ACM, 91–100.

4. Andreas Karrenbauer and Antti Oulasvirta. 2014.
Improvements to keyboard optimization with integer
programming. In Proceedings of the 27th annual ACM
symposium on User interface software and technology.
ACM, 621–626.

5. Sunjun Kim, Byungjoo Lee, and Antti Oulasvirta. 2018.
Impact Activation Improves Rapid Button Pressing. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, to appear.

6. Y Kozlov and T Weinkauf. 2015. Persistence1D:
Extracting and filtering minima and maxima of 1d
functions. h ttp://people. mpi-inf. mpg.
de/ weinkauf/notes/persistence1d. html, accessed
(2015), 11–01.

7. Byungjoo Lee and Hyunwoo Bang. 2013. A kinematic
analysis of directional effects on mouse control.
Ergonomics 56, 11 (2013), 1754–1765.

8. Byungjoo Lee and Hyunwoo Bang. 2015. A mouse with
two optical sensors that eliminates coordinate
disturbance during skilled strokes. Human–Computer
Interaction 30, 2 (2015), 122–155.

9. Byungjoo Lee, Qiao Deng, Eve Hoggan, and Antti
Oulasvirta. 2017. Boxer: a multimodal collision
technique for virtual objects. In Proceedings of the 19th
ACM International Conference on Multimodal
Interaction. ACM, 252–260.

10. Byungjoo Lee, Sunjun Kim, and Antti Oulasvirta. 2018.
Moving Target Selection: A Cue Integration Model. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, to appear.

11. Byungjoo Lee, Mathieu Nancel, and Antti Oulasvirta.
2016. AutoGain: Adapting Gain Functions by
Optimizing Submovement Efficiency. arXiv preprint
arXiv:1611.08154 (2016).

12. Byungjoo Lee and Antti Oulasvirta. 2016. Modelling
error rates in temporal pointing. In Proceedings of the
2016 CHI Conference on Human Factors in Computing
Systems. ACM, 1857–1868.

13. Martez E Mott and Jacob O Wobbrock. 2014. Beating
the bubble: using kinematic triggering in the bubble
lens for acquiring small, dense targets. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 733–742.

14. Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018.
Neuromechanics of a Button Press. In Proceedings of
the 2018 CHI Conference on Human Factors in
Computing Systems. ACM, to appear.

15. Daryl Weir, Henning Pohl, Simon Rogers, Keith
Vertanen, and Per Ola Kristensson. 2014. Uncertain
text entry on mobile devices. In Proceedings of the
SIGCHI conference on human factors in computing
systems. ACM, 2307–2316.

16. Jacob O Wobbrock, Edward Cutrell, Susumu Harada,
and I Scott MacKenzie. 2008. An error model for
pointing based on Fitts’ law. In Proceedings of the
SIGCHI conference on human factors in computing
systems. ACM, 1613–1622.

17. Shumin Zhai, Jing Kong, and Xiangshi Ren. 2004.
Speed–accuracy tradeoff in FittsâĂŹ law tasksâĂŤon
the equivalency of actual and nominal pointing
precision. International journal of human-computer
studies 61, 6 (2004), 823–856.

CHI 2018 Late-Breaking Abstract CHI 2018, April 21–26, 2018, Montréal, QC, Canada

LBW116, Page 6


	Introduction
	Related Work
	Working Principles of Button++
	Implementation

	Pilot Study
	Future Work
	Acknowledgement
	REFERENCES 



